This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132324 #20 Sep 22 2024 17:55:41 %S A132324 1,5,6,4,9,3,4,0,1,8,5,6,7,0,1,1,5,3,7,9,3,8,8,4,9,1,0,6,7,2,8,8,3,5, %T A132324 4,1,6,5,6,9,4,2,5,9,1,9,8,9,5,0,3,5,0,0,9,4,9,6,7,2,1,0,2,9,9,2,3,0, %U A132324 2,1,1,0,7,2,5,8,0,9,6,7,6,6,9,3,9,0,3,6,6,0,3,6,7,7,2,9,6,3,8,8,1,5,2,6,0 %N A132324 Decimal expansion of Product_{k>=1} (1+1/3^k). %C A132324 Half the constant A132323. %H A132324 G. C. Greubel, <a href="/A132324/b132324.txt">Table of n, a(n) for n = 1..1200</a> %H A132324 Richard J. McIntosh, <a href="https://doi.org/10.1112/jlms/51.1.120">Some Asymptotic Formulae for q-Hypergeometric Series</a>, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; <a href="https://citeseerx.ist.psu.edu/pdf/4f03a5e304ec19f8a725774525aecd2a78f4ad81">alternative link</a>. %F A132324 (1/2)*lim sup Product{k=0..floor(log_3(n))} (1+1/floor(n/3^k)) for n-->oo. %F A132324 (1/2)*lim sup A132327(n)/A132027(n) for n-->oo. %F A132324 (1/2)*lim sup A132327(n)/n^((1+log_3(n))/2) for n-->oo. %F A132324 (1/2)*lim sup A132328(n)/n^((log_3(n)-1)/2) for n-->oo. %F A132324 exp(Sum_{n>0} 3^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*3^n)). %F A132324 (1/2)*lim sup A132327(n+1)/A132327(n) = 1.56493401856701153793884910... for n-->oo. %F A132324 Equals (-1/3; 1/3)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - _G. C. Greubel_, Dec 01 2015 %F A132324 From _Amiram Eldar_, Feb 19 2022: (Start) %F A132324 Equals (sqrt(2)/2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995). %F A132324 Equals Sum_{n>=0} 1/A027871(n). (End) %e A132324 1.56493401856701153793884910... %t A132324 digits = 105; NProduct[1+1/3^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *) %t A132324 N[QPochhammer[-1/3,1/3]] (* _G. C. Greubel_, Dec 01 2015 *) %Y A132324 Cf. A027871, A079555, A100220, A132019-A132026, A132034-A132038, A132265-A132268, A132323-A132326, A132327, A132328, A000593. %K A132324 nonn,cons %O A132324 1,2 %A A132324 _Hieronymus Fischer_, Aug 20 2007