This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132326 #18 Aug 06 2024 05:09:05 %S A132326 1,1,1,2,2,3,4,5,6,9,1,3,7,0,5,0,6,3,2,1,2,6,0,7,8,0,6,7,0,9,4,4,0,5, %T A132326 8,0,3,7,4,7,5,0,7,4,6,7,5,7,7,5,9,2,8,3,5,7,8,7,9,5,8,2,3,7,0,3,3,2, %U A132326 5,3,4,6,9,4,8,8,1,4,1,1,0,4,3,7,6,4,7,2,2,2,2,6,4,2,1,3,5,2,3,5,5,6,4,7,4 %N A132326 Decimal expansion of Product_{k>=1} (1+1/10^k). %C A132326 Half the constant A132325. %H A132326 G. C. Greubel, <a href="/A132326/b132326.txt">Table of n, a(n) for n = 1..1200</a> %H A132326 Richard J. McIntosh, <a href="https://doi.org/10.1112/jlms/51.1.120">Some Asymptotic Formulae for q-Hypergeometric Series</a>, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; <a href="https://citeseerx.ist.psu.edu/pdf/4f03a5e304ec19f8a725774525aecd2a78f4ad81">alternative link</a>. %F A132326 Equals (1/2)*lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)). %F A132326 Equals (1/2)*lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2). %F A132326 Equals (1/2)*lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2). %F A132326 Equals exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*10^n)). %F A132326 Equals (1/2)*lim sup_{n->oo} A132271(n+1)/A132271(n). %F A132326 Equals (-1/10; 1/10)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - _G. C. Greubel_, Dec 01 2015 %F A132326 Equals (sqrt(2)/2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - _Amiram Eldar_, May 20 2023 %e A132326 1.1122345691370506321260780670944... %t A132326 digits = 105; NProduct[1+1/3^k, {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 18 2014 *) %t A132326 N[QPochhammer[-1/10,1/10]] (* _G. C. Greubel_, Dec 01 2015 *) %o A132326 (PARI) prodinf(k=1, 1+1/10^k) \\ _Amiram Eldar_, May 20 2023 %Y A132326 Cf. A000593, A067080, A079555, A132019-A132026, A132034-A132038, A132265-A132268, A132271, A132272, A132325. %K A132326 nonn,cons %O A132326 1,4 %A A132326 _Hieronymus Fischer_, Aug 20 2007