cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132327 a(n) = Product{k>=0} (1 + floor(n/3^k)).

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 21, 24, 27, 80, 88, 96, 130, 140, 150, 192, 204, 216, 399, 420, 441, 528, 552, 576, 675, 702, 729, 2240, 2320, 2400, 2728, 2816, 2904, 3264, 3360, 3456, 4810, 4940, 5070, 5600, 5740, 5880, 6450, 6600, 6750, 8832, 9024, 9216, 9996, 10200
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/3^0))*(1+floor(12/3^1))*(1+floor(12/3^2))=13*5*2=130; a(20)=441 since 20=202(base-3) and so
a(20)=(1+202)*(1+20)*(1+2)(base-3)=21*7*3=441.
		

Crossrefs

Cf. A100220, A132027, A132038, A132264, A132269(for p=2), A132271(for p=10).
For formulas regarding a general parameter p (i.e. terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Mathematica
    Table[Product[1+Floor[n/3^k],{k,0,n}],{n,0,49}] (* James C. McMahon, Mar 07 2025 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/3)); a(3n)=(1+3n)*a(n); a(n*3^m)=product{1<=k<=m, 1+n*3^k}*a(n).
a(k*3^m-j)=(k*3^m-j+1)*3^m*p^(m(m-1)/2), for 0=1, a(3^m)=3^(m(m+1)/2)*product{0<=k<=m, 1+1/3^k}, m>=1.
a(n)=A132328(3*n)=(1+n)*A132328(n).
Asymptotic behavior: a(n)=O(n^((1+log_3(n))/2)); this follows from the inequalities below.
a(n)<=A132027(n)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/product{1<=k<=floor(log_3(n)), 1-1/3^k}.
a(n)A000217(log_3(n)), where c=product{k>=0, 1+1/p^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)=3^A000217(log_3(n)).
lim sup a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).