A132336 Sum of the integers from 1 to n, excluding perfect fifth powers.
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 495, 528, 562, 597, 633, 670, 708, 747, 787, 828, 870, 913, 957, 1002, 1048, 1095, 1143, 1192, 1242, 1293, 1345, 1398, 1452
Offset: 1
Examples
a(1)=0+1, excluding 0 and 1, so a(1)=0. a(2)=0+1+2, excluding 0 and 1, so a(2)=2. a(3)=0+1+2+3, excluding 0 and 1, so a(3)=2+3=5.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A000217 := proc(n) n*(n+1)/2 ; end proc: A000539 := proc(n) (2*n^6+6*n^5+5*n^4-n^2)/12 ; end proc: A132336 := proc(n) r := floor(n^(1/5)) ; A000217(n)-A000539(r); end proc: seq(A132336(n),n=1..40) ;
-
PARI
g5(n)=for(x=1, n, r=floor(x^(1/5)); sum5=(2*r^6+6*r^5+5*r^4-r^2)/12; sn=x* (x+1)/2; print1(sn-sum5, ", "))
-
PARI
a(n) = my(r=sqrtnint(n,5)); n*(n+1)/2 - (2*r^6+6*r^5+5*r^4-r^2)/12; \\ Ruud H.G. van Tol, Nov 02 2023
-
Python
from sympy import integer_nthroot def A132336(n): return n*(n+1)-(m:=integer_nthroot(n,5)[0])**2*(m**2*(m*(m+3<<1)+5)-1)//6>>1 # Chai Wah Wu, Jun 06 2025
Formula
Extensions
Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.