cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132336 Sum of the integers from 1 to n, excluding perfect fifth powers.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 495, 528, 562, 597, 633, 670, 708, 747, 787, 828, 870, 913, 957, 1002, 1048, 1095, 1143, 1192, 1242, 1293, 1345, 1398, 1452
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Examples

			a(1)=0+1, excluding 0 and 1, so a(1)=0.
a(2)=0+1+2, excluding 0 and 1, so a(2)=2.
a(3)=0+1+2+3, excluding 0 and 1, so a(3)=2+3=5.
		

Crossrefs

Different from A000096.
Cf. A132337.

Programs

  • Maple
    A000217 := proc(n) n*(n+1)/2 ; end proc:
    A000539 := proc(n) (2*n^6+6*n^5+5*n^4-n^2)/12 ; end proc:
    A132336 := proc(n) r := floor(n^(1/5)) ; A000217(n)-A000539(r); end proc: seq(A132336(n),n=1..40) ;
  • PARI
    g5(n)=for(x=1, n, r=floor(x^(1/5)); sum5=(2*r^6+6*r^5+5*r^4-r^2)/12; sn=x* (x+1)/2; print1(sn-sum5, ", "))
    
  • PARI
    a(n) = my(r=sqrtnint(n,5)); n*(n+1)/2 - (2*r^6+6*r^5+5*r^4-r^2)/12; \\ Ruud H.G. van Tol, Nov 02 2023
    
  • Python
    from sympy import integer_nthroot
    def A132336(n): return n*(n+1)-(m:=integer_nthroot(n,5)[0])**2*(m**2*(m*(m+3<<1)+5)-1)//6>>1 # Chai Wah Wu, Jun 06 2025

Formula

a(n) = A000217(n) - A000539(r) where r = floor(n^(1/5)).
a(n) = n(n+1)/2 - (2r^6 + 6r^5 + 5r^4 - r^2)/12.
a(n) = A000217(n) - A000539(r) where r= A178487(n). - R. J. Mathar, Oct 12 2010

Extensions

Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.