cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132359 Numbers divisible by the square of their last decimal digit.

This page as a plain text file.
%I A132359 #42 Jul 04 2022 01:36:27
%S A132359 1,11,12,21,25,31,32,36,41,51,52,61,63,64,71,72,75,81,91,92,101,111,
%T A132359 112,121,125,128,131,132,141,144,147,151,152,153,161,171,172,175,181,
%U A132359 191,192,201,211,212,216,221,224,225,231,232,241,243,251,252,261,271,272
%N A132359 Numbers divisible by the square of their last decimal digit.
%C A132359 Subsequences are A017281 and A053742 representing last digits 1 and 5. Generators for the subsequences representing last digits 2, 3, 4, 6, 7, 8 and 9 are, in that order, the terms 12+20i, 63+90i, 64+80i, 36+180i, 147+490i, 128+320i, 729+810i, where i=0,1,2,... - _R. J. Mathar_, Nov 13 2007
%C A132359 This is a 10-automatic sequence. - _Charles R Greathouse IV_, Dec 28 2011
%H A132359 T. D. Noe and Christian N. K. Anderson, <a href="/A132359/b132359.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 values from T. D. Noe)
%H A132359 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A132359 Numbers k such that fp[k / (k mod 10)] = 0.
%F A132359 a(n) ~ 6350400*n/1241929 = 5.113...*n. - _Charles R Greathouse IV_, Dec 28 2011
%e A132359 147 belongs to the sequence because 147/7^2 = 3.
%p A132359 isA132359 := proc(n) local ldig ; ldig := n mod 10 ; if ldig <> 0 and n mod (ldig^2) = 0 then true ; else false ; fi ; end: for n from 1 to 400 do if isA132359(n) then printf("%d,",n) ; fi ; od: # _R. J. Mathar_, Nov 13 2007
%p A132359 a:=proc(n) local nn: nn:=convert(n,base,10): if 0 < nn[1] and `mod`(n,nn[1]^2) =0 then n else end if end proc: seq(a(n),n=1..250); # _Emeric Deutsch_, Nov 15 2007
%t A132359 Select[Range[250], IntegerDigits[ # ][[ -1]] > 0 && Mod[ #, IntegerDigits[ # ][[ -1]]^2] == 0 &] (* _Stefan Steinerberger_, Nov 12 2007 *)
%t A132359 dsldQ[n_]:=Module[{lidnsq=Last[IntegerDigits[n]]^2},lidnsq!=0 && Divisible[n,lidnsq]]; Select[Range[300],dsldQ] (* _Harvey P. Dale_, May 03 2011 *)
%o A132359 (PARI) is(n)=n%(n%10)^2==0 \\ _Charles R Greathouse IV_, Dec 28 2011
%o A132359 (R) which(sapply(1:500,function(x) isint(x/(x%%10)^2))) # _Christian N. K. Anderson_, May 04 2013
%o A132359 (Python)
%o A132359 def ok(n): return n%10 > 0 and n%(n%10)**2 == 0
%o A132359 print([k for k in range(273) if ok(k)]) # _Michael S. Branicky_, Jul 03 2022
%Y A132359 Cf. A034709, A225722, A221651, A225296, A225297, A034709, A034837, A005349, A007602, A034838, A225297.
%K A132359 base,easy,nonn,nice
%O A132359 1,2
%A A132359 _Jonathan Vos Post_, Nov 08 2007
%E A132359 Corrected and extended by _Stefan Steinerberger_, _Emeric Deutsch_ and _R. J. Mathar_, Nov 12 2007