This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132366 #40 Jun 05 2025 07:55:50 %S A132366 1,6,21,56,125,246,441,736,1161,1750,2541,3576,4901,6566,8625,11136, %T A132366 14161,17766,22021,27000,32781,39446,47081,55776,65625,76726,89181, %U A132366 103096,118581,135750,154721,175616,198561,223686,251125,281016,313501,348726,386841 %N A132366 Partial sum of centered tetrahedral numbers A005894. %C A132366 From _Robert A. Russell_, Oct 09 2020: (Start) %C A132366 a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}. %C A132366 There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem. %C A132366 Partition Count Odd Cycle Indices %C A132366 41 30 x_1x_4^1 %C A132366 32 20 x_2^1x_3^1 %C A132366 2111 10 x_1^3x_2^1 (End) %H A132366 Nathaniel Johnston, <a href="/A132366/b132366.txt">Table of n, a(n) for n = 0..5000</a> %H A132366 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A132366 a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6. %F A132366 G.f.: -(x+1)*(x^2+1) / (x-1)^5. - _Colin Barker_, May 04 2013 %F A132366 From _Robert A. Russell_, Oct 09 2020: (Start) %F A132366 a(n-1) = n^2 * (5 + n^2) / 6. %F A132366 a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n). %F A132366 a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors. %F A132366 a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) . %F A132366 G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End) %F A132366 From _Amiram Eldar_, Feb 14 2023: (Start) %F A132366 Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)). %F A132366 Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End) %F A132366 a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - _R. J. Mathar_, Jun 05 2025 %t A132366 Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}] %t A132366 Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* _Harvey P. Dale_, Feb 26 2020 *) %Y A132366 Cf. A000292, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496. %Y A132366 Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell). %Y A132366 a(n-1) = A325001(4,n). %K A132366 easy,nonn %O A132366 0,2 %A A132366 _Jonathan Vos Post_, Nov 09 2007 %E A132366 Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009