cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132370 Array read by antidiagonals: T(m,n) = number of spotlight tilings of a width 1 m X n frame.

This page as a plain text file.
%I A132370 #9 Jan 02 2023 16:49:28
%S A132370 16,34,34,58,68,58,88,112,112,88,124,166,180,166,124,166,230,262,262,
%T A132370 230,166,214,304,358,376,358,304,214,268,388,468,508,508,468,388,268,
%U A132370 328,482,592,658,680,658,592,482,328,394,586,730,826,874,874,826,730,586,394
%N A132370 Array read by antidiagonals: T(m,n) = number of spotlight tilings of a width 1 m X n frame.
%H A132370 Andrew Howroyd, <a href="/A132370/b132370.txt">Table of n, a(n) for n = 3..1277</a> (first 50 antidiagonals)
%H A132370 B. E. Tenner, <a href="http://dx.doi.org/10.1007/s00026-011-0077-6">Spotlight tiling</a>, Ann. Combin. 14 (4) (2010) 553; <a href="https://arxiv.org/abs/0711.1819">arXiv preprint</a>, arXiv:0711.1819 [math.CO], 2007-2008.
%F A132370 T(m,n) = 2*(m-2)*(n-2)*(m+n-2) + (m-2)*(m+1) + (n-2)*(n+1).
%e A132370 A 3 X 3 frame with width 1 has 16 spotlight tilings.
%e A132370 Array begins:
%e A132370 ===============================================
%e A132370 m/n  |   3   4   5    6    7    8    9   10 ...
%e A132370 -----+-----------------------------------------
%e A132370    3 |  16  34  58   88  124  166  214  268 ...
%e A132370    4 |  34  68 112  166  230  304  388  482 ...
%e A132370    5 |  58 112 180  262  358  468  592  730 ...
%e A132370    6 |  88 166 262  376  508  658  826 1012 ...
%e A132370    7 | 124 230 358  508  680  874 1090 1328 ...
%e A132370    8 | 166 304 468  658  874 1116 1384 1678 ...
%e A132370    9 | 214 388 592  826 1090 1384 1708 2062 ...
%e A132370   10 | 268 482 730 1012 1328 1678 2062 2480 ...
%e A132370   ...
%o A132370 (PARI) T(m,n) = 2*(m-2)*(n-2)*(m+n-2) + (m-2)*(m+1) + (n-2)*(n+1) \\ _Andrew Howroyd_, Jan 02 2023
%Y A132370 Cf. A051597, A051601.
%K A132370 nonn,tabl
%O A132370 3,1
%A A132370 _Bridget Tenner_, Nov 09 2007
%E A132370 Terms a(31) and beyond from _Andrew Howroyd_, Jan 02 2023