This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132374 #18 Nov 09 2022 00:07:09 %S A132374 1,1,8,15,120,274,2192,5531,44248,118686,949488,2654646,21237168, %T A132374 61189668,489517344,1443039123,11544312984,34648845862,277190766896, %U A132374 844131474530,6753051796240,20813234394492,166505875155936,518373091849502 %N A132374 Expansion of c(7*x^2)/(1 - x*c(7*x^2)), where c(x) is the g.f. of A000108. %C A132374 Hankel transform is 7^C(n+1,2). %C A132374 Series reversion of x*(1+x)*(1+2*x+8*x^2). %H A132374 G. C. Greubel, <a href="/A132374/b132374.txt">Table of n, a(n) for n = 0..1000</a> %F A132374 a(n) = Sum_{k=0..n} A120730(n,k) * 7^(n-k). %F A132374 From _G. C. Greubel_, Nov 08 2022: (Start) %F A132374 a(n) = 4*( 2*(n+1)*a(n-1) + 7*(n-2)*a(n-2) - 56*(n-2)*a(n-3) )/(n+1). %F A132374 G.f.: (1 - sqrt(1 - 28*x^2))/(14*x^2 - x*(1 - sqrt(1 - 28*x^2))). (End) %t A132374 CoefficientList[Series[(1-Sqrt[1-28*x^2])/(14*x^2 -x*(1-Sqrt[1-28*x^2])), {x,0,40}], x] (* _G. C. Greubel_, Nov 08 2022 *) %o A132374 (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-28*x^2))/(14*x^2 -x*(1-Sqrt(1-28*x^2))) )); // _G. C. Greubel_, Nov 08 2022 %o A132374 (SageMath) %o A132374 def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) %o A132374 def A132374(n): return sum(7^(n-k)*A120730(n,k) for k in range(n+1)) %o A132374 [A132374(n) for n in range(51)] # _G. C. Greubel_, Nov 08 2022 %Y A132374 Cf. A000108, A001405, A120730, A126087, A128386, A121724, A128387, A121725. %K A132374 easy,nonn %O A132374 0,3 %A A132374 _Philippe Deléham_, Nov 10 2007