This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132385 #13 Jun 28 2018 02:44:35 %S A132385 0,0,1,1,2,3,0,3,0,4,4,4,1,2,6,5,6,1,2,7,2,8,8,8,8,2,2,2,9,10,3,10,11, %T A132385 11,3,2,4,5,3,11,12,4,3,13,3,14,14,14,4,14,15,4,15,4,16,5,5,16,16,16, %U A132385 6,6,0,17,5,18,5,18,19,5 %N A132385 Number of distinct primes among the cubes mod n. %C A132385 This is to cubes A000578 as A132213 is to squares A000290. %C A132385 It seems that the size of a(n) as compared to its surrounding elements is dependent on whether or not n is in A088232. If n is in A088232 the sequence assumes "big" values, otherwise the values will be "small". - _Stefan Steinerberger_, Nov 24 2007 %C A132385 If n is in A088232, a(n) = A000720(n-1) - A056170(n). - _Robert Israel_, Jun 28 2018 %H A132385 Robert Israel, <a href="/A132385/b132385.txt">Table of n, a(n) for n = 1..10000</a> %F A132385 a(n) = Card{p = k^3 mod n, for primes p and for all integers k}. %e A132385 a(10) = 4 because the cubes mod 10 repeat 0, 1, 8, 7, 4, 5, 6, 3, 2, 9, 0, 1, 8, 7, 4, 5, ... of which the 4 distinct primes are {2, 3, 5, 7}. %p A132385 f:= proc(n) %p A132385 if numtheory:-phi(n) mod 3 = 0 then nops(select(isprime, {seq(i^3 mod n, i=0..n-1)})) %p A132385 else numtheory:-pi(n-1) - nops(select(t -> t[2]>1, ifactors(n)[2])) %p A132385 fi %p A132385 end proc: %p A132385 map(f, [$1..100]); # _Robert Israel_, Jun 28 2018 %t A132385 Table[Length[Select[Union[Table[Mod[i^3, n], {i, 0, n}], Table[Mod[i^3, n], {i, 0, n}]], PrimeQ[ # ] &]], {n, 1, 70}] (* _Stefan Steinerberger_, Nov 12 2007 *) %Y A132385 Cf. A000040, A000578, A000720, A056170, A132213. %K A132385 easy,nonn,look %O A132385 1,5 %A A132385 _Jonathan Vos Post_, Nov 07 2007 %E A132385 More terms from _Stefan Steinerberger_, Nov 12 2007 %E A132385 Spelling/notation corrections by _Charles R Greathouse IV_, Mar 18 2010