cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.

This page as a plain text file.
%I A132393 #219 Aug 27 2025 00:44:46
%S A132393 1,0,1,0,1,1,0,2,3,1,0,6,11,6,1,0,24,50,35,10,1,0,120,274,225,85,15,1,
%T A132393 0,720,1764,1624,735,175,21,1,0,5040,13068,13132,6769,1960,322,28,1,0,
%U A132393 40320,109584,118124,67284,22449,4536,546,36,1,0,362880,1026576,1172700,723680,269325,63273,9450,870,45,1
%N A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.
%C A132393 Another name: Triangle of signless Stirling numbers of the first kind.
%C A132393 Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
%C A132393 A094645*A007318 as infinite lower triangular matrices.
%C A132393 Row sums are the factorial numbers. - _Roger L. Bagula_, Apr 18 2008
%C A132393 Exponential Riordan array [1/(1-x), log(1/(1-x))]. - _Ralf Stephan_, Feb 07 2014
%C A132393 Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - _Peter Luschny_, Dec 31 2015
%C A132393 This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - _Wolfdieter Lang_, Feb 21 2017
%C A132393 T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - _Wolfdieter Lang_, May 28 2017
%C A132393 From _Wolfdieter Lang_, Jul 20 2017: (Start)
%C A132393 The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
%C A132393 This inversion gives D(d,t) =  P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) =  Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
%C A132393 For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - _Ian Duff_, Jul 12 2019
%D A132393 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
%D A132393 R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
%D A132393 Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
%H A132393 Reinhard Zumkeller, <a href="/A132393/b132393.txt">Rows n = 0..125 of triangle, flattened</a>
%H A132393 Roland Bacher and P. De La Harpe, <a href="https://hal.archives-ouvertes.fr/hal-01285685/document">Conjugacy growth series of some infinitely generated groups</a>, hal-01285685v2, 2016.
%H A132393 Eli Bagno and David Garber, <a href="https://arxiv.org/abs/2401.08365">Combinatorics of q,r-analogues of Stirling numbers of type B</a>, arXiv:2401.08365 [math.CO], 2024. See page 5.
%H A132393 Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x))</a>.
%H A132393 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013.
%H A132393 Jean-Luc Baril and Sergey Kirgizov, <a href="http://jl.baril.u-bourgogne.fr/Stirling.pdf">The pure descent statistic on permutations</a>, Preprint, 2016.
%H A132393 Jean-Luc Baril and Sergey Kirgizov, <a href="https://arxiv.org/abs/2101.01928">Transformation à la Foata for special kinds of descents and excedances</a>, arXiv:2101.01928 [math.CO], 2021.
%H A132393 Jean-Luc Baril and José L. Ramírez, <a href="https://arxiv.org/abs/2410.15434">Some distributions in increasing and flattened permutations</a>, arXiv:2410.15434 [math.CO], 2024. See p. 9.
%H A132393 Ricky X. F. Chen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Chen/chen11.html">A Note on the Generating Function for the Stirling Numbers of the First Kind</a>, Journal of Integer Sequences, 18 (2015), #15.3.8.
%H A132393 Bishal Deb and Alan D. Sokal, <a href="https://arxiv.org/abs/2507.18959">Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness</a>, arXiv:2507.18959 [math.CO], 2025. See p. 5.
%H A132393 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000007">The number of saliances of a permutation</a>, <a href="http://www.findstat.org/StatisticsDatabase/St000031">The number of cycles in the cycle decomposition of a permutation</a>.
%H A132393 Bill Gosper, <a href="/A008275/a008275.png">Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7</a>
%H A132393 W. Steven Gray and Makhin Thitsa, <a href="http://dx.doi.org/10.1109/SSST.2013.6524939">System Interconnections and Combinatorial Integer Sequences</a>, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
%H A132393 John M. Holte, <a href="http://www.jstor.org/stable/2974981">Carries, Combinatorics and an Amazing Matrix</a>, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 138-149.
%H A132393 Tanya Khovanova and J. B. Lewis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Khovanova/khova6.html">Skyscraper Numbers</a>, J. Int. Seq. 16 (2013) #13.7.2.
%H A132393 Sergey Kitaev and Philip B. Zhang, <a href="https://arxiv.org/abs/1811.07679">Distributions of mesh patterns of short lengths</a>, arXiv:1811.07679 [math.CO], 2018.
%H A132393 Wolfdieter Lang, <a href="https://arxiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers</a>, arXiv:1707.04451 [math.NT], 2017.
%H A132393 Shuzhen Lv and Philip B. Zhang, <a href="https://arxiv.org/abs/2501.00357">Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings</a>, arXiv:2501.00357 [math.CO], 2024. See p. 11.
%H A132393 Shuzhen Lv and Philip B. Zhang, <a href="https://arxiv.org/abs/2506.23148">Joint equidistributions of mesh patterns 123 and 132 with antipodal shadings</a>, arXiv:2506.23148 [math.CO], 2025. See p. 6.
%H A132393 Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
%H A132393 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/5089097/929945">Symmetric (under the swapping) recursions for Stirling numbers of both kinds</a>, Aug 10 2025.
%H A132393 Emanuele Munarini, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Munarini/muna4.html">Shifting Property for Riordan, Sheffer and Connection Constants Matrices</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
%H A132393 Emanuele Munarini, <a href="https://doi.org/10.2298/AADM180226017M">Combinatorial identities involving the central coefficients of a Sheffer matrix</a>, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
%H A132393 Fedor Petrov, <a href="https://mathoverflow.net/a/488662/231922">Recursive algorithm for columns of Stirling numbers of the first kind</a>, answer to question on MathOverflow (2025).
%H A132393 E. G. Santos, <a href="https://arxiv.org/abs/2411.16492">Counting non-attacking chess pieces placements: Bishops and Anassas</a>, arXiv:2411.16492 [math.CO], 2024. See p. 2.
%H A132393 Umesh Shankar, <a href="https://arxiv.org/abs/2508.12467">Log-concavity of rows of triangular arrays satisfying a certain super-recurrence</a>, arXiv:2508.12467 [math.CO], 2025. See p. 4.
%H A132393 Xun-Tuan Su, Deng-Yun Yang, and Wei-Wei Zhang, <a href="http://ajc.maths.uq.edu.au/pdf/56/ajc_v56_p133.pdf">A note on the generalized factorial</a>, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
%H A132393 Benjamin Testart, <a href="https://arxiv.org/abs/2407.07701">Completing the enumeration of inversion sequences avoiding one or two patterns of length 3</a>, arXiv:2407.07701 [math.CO], 2024. See p. 37.
%F A132393 T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
%F A132393 Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - _Philippe Deléham_, Nov 13 2007
%F A132393 Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - _Roger L. Bagula_, Apr 18 2008
%F A132393 Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - _Philippe Deléham_, Sep 18 2008
%F A132393 a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - _Philippe Deléham_, Sep 20 2008
%F A132393 Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - _Philippe Deléham_, Sep 21 2008
%F A132393 Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - _Philippe Deléham_, Oct 17 2008
%F A132393 From _Wolfdieter Lang_, Feb 21 2017: (Start)
%F A132393 E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
%F A132393 E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
%F A132393 E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
%F A132393 From _Wolfdieter Lang_, May 28 2017: (Start)
%F A132393 The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
%F A132393 T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1)}_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
%F A132393 Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - _Wolfdieter Lang_, Aug 11 2017
%F A132393 T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - _Mélika Tebni_, Mar 02 2023
%F A132393 n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - _Peter Bala_, Mar 31 2024
%F A132393 From _Mikhail Kurkov_, Mar 05 2025: (Start)
%F A132393 For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
%F A132393 Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1.
%F A132393 Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link). (End)
%e A132393 Triangle T(n,k) begins:
%e A132393   1;
%e A132393   0,    1;
%e A132393   0,    1,     1;
%e A132393   0,    2,     3,     1;
%e A132393   0,    6,    11,     6,    1;
%e A132393   0,   24,    50,    35,   10,    1;
%e A132393   0,  120,   274,   225,   85,   15,   1;
%e A132393   0,  720,  1764,  1624,  735,  175,  21,  1;
%e A132393   0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
%e A132393   ...
%e A132393 ---------------------------------------------------
%e A132393 Production matrix is
%e A132393   0, 1
%e A132393   0, 1, 1
%e A132393   0, 1, 2,  1
%e A132393   0, 1, 3,  3,  1
%e A132393   0, 1, 4,  6,  4,  1
%e A132393   0, 1, 5, 10, 10,  5,  1
%e A132393   0, 1, 6, 15, 20, 15,  6, 1
%e A132393   0, 1, 7, 21, 35, 35, 21, 7, 1
%e A132393   ...
%e A132393 From _Wolfdieter Lang_, May 09 2017: (Start)
%e A132393 Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
%e A132393 Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
%e A132393 Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - _Wolfdieter Lang_, May 28 2017
%e A132393 O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - _Wolfdieter Lang_, Jul 20 2017
%e A132393 Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - _Wolfdieter Lang_, Aug 11 2017
%p A132393 a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x,n)),x,k),k=0..n) end: # _Peter Luschny_, Nov 28 2010
%t A132393 p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* _Roger L. Bagula_, Apr 18 2008 *)
%t A132393 Flatten[Table[Abs[StirlingS1[n,i]],{n,0,10},{i,0,n}]] (* _Harvey P. Dale_, Feb 04 2014 *)
%o A132393 (Maxima) create_list(abs(stirling1(n,k)),n,0,12,k,0,n); /* _Emanuele Munarini_, Mar 11 2011 */
%o A132393 (Haskell)
%o A132393 a132393 n k = a132393_tabl !! n !! k
%o A132393 a132393_row n = a132393_tabl !! n
%o A132393 a132393_tabl = map (map abs) a048994_tabl
%o A132393 -- _Reinhard Zumkeller_, Nov 06 2013
%o A132393 (PARI) column(n,k) = my(v1, v2); v1 = vector(n-1, i, 0); v2 = vector(n, i, 0); v2[1] = 1; for(i=1, n-1, v1[i] = (i+k)*(i+k-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+k)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 \\ generates n first elements of the k-th column starting from the first nonzero element. - _Mikhail Kurkov_, Mar 05 2025
%Y A132393 Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.
%K A132393 nonn,tabl,easy,changed
%O A132393 0,8
%A A132393 _Philippe Deléham_, Nov 10 2007, Oct 15 2008, Oct 17 2008