This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132435 #12 Jan 03 2021 11:19:57 %S A132435 4,6,9,10,14,22,25,35,49,55,65,77,85,91,119,121,143,169,187,209,221, %T A132435 247,253,289,299,319,323,361,377,391,407,437,493,527,529,551,589,629, %U A132435 667,697,703,713,841,851,899,943,961,989,1073,1081,1147,1189 %N A132435 Composite integers n with two prime factors nearly equidistant from the integer part of the square root of n. %C A132435 An integer n is included if, for some value y >= 0: n = A007918(A000196(n) + y) * A007918(A000196(n) - y) Or: n = nextprime(sqrtint(n) + y) * nextprime(sqrtint(n) - y) Where "nextprime(x)" is the smallest prime number >= to x and "sqrtint(z)" is the integer part of the square root of z. %C A132435 Has many terms in common with A078972. - _Bill McEachen_, Dec 24 2020 %H A132435 Michel Marcus, <a href="/A132435/b132435.txt">Table of n, a(n) for n = 1..3406</a> %e A132435 25 = nextprime(5 + 0) * nextprime(5 - 0) = 5 * 5 = 25 %e A132435 35 = nextprime(5 + 1) * nextprime(5 - 1) = 7 * 5 = 35 %e A132435 119 = nextprime(10 + 4) * nextprime(10 - 4) = 17 * 7 = 119 %o A132435 (PARI) bal(x,y) = nextprime(sqrtint(x)+y) * nextprime(sqrtint(x)-y); %o A132435 findbal(x) = local(z,y); z=sqrtint(x); while( 0<=z, y=bal(x,z); if(y==x, print1(x", ");break;); z--;); %o A132435 for (n=1,1200, findbal(n)); %Y A132435 Cf. A007918, A000196, A078972. %K A132435 nonn %O A132435 1,1 %A A132435 _Andrew S. Plewe_, Nov 13 2007