A132439 Square array a(m,n) read by antidiagonals, where a(m,n) is the number of ways to move a chess queen from the lower left corner to square (m,n), with the queen moving only up, right, or diagonally up-right.
1, 1, 1, 2, 3, 2, 4, 7, 7, 4, 8, 17, 22, 17, 8, 16, 40, 60, 60, 40, 16, 32, 92, 158, 188, 158, 92, 32, 64, 208, 401, 543, 543, 401, 208, 64, 128, 464, 990, 1498, 1712, 1498, 990, 464, 128, 256, 1024, 2392, 3985, 5079, 5079, 3985, 2392, 1024, 256
Offset: 1
Examples
The table begins 1 1 2 4 8 16 32 ... 1 3 7 17 40 92 208 ... 2 7 22 60 158 401 990 ... 4 17 60 188 543 1498 3985 ... 8 40 158 543 1712 5079 14430 ... a(3,4)=4+17+2+7+22+1+7=60.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened)
- Peter Kagey, Parity bitmap of first 1024 rows and columns. (Even and odd entries and represented by black and white pixels respectively.)
Crossrefs
Cf. A035002.
Formula
a(1,1)=1; a(1,2)=1; a(1,3)=2; a(2,1)=1; a(2,2)=3; a(2,3)=7; a(3,1)=2; a(3,2)=7; a(3,3)=22; a(m,n) = 2*a(m-1,n)+2*a(m,n-1)-a(m-1,n-1)-3*a(m-2,n-1)-3*a(m-1,n-2)+4*a(m-2,n-2), where m >=3 or n >= 3 and a(m,n)=0 if m <= 0 or n <= 0.
G.f.: (xy-x^2y-xy^2+x^3y^2+x^2y^3-x^3y^3)/(1-2x-2y+xy+3x^2y+3xy^2-4x^2y^2).
Comments