A132447 First primitive GF(2)[X] polynomial of degree n.
3, 7, 11, 19, 37, 67, 131, 285, 529, 1033, 2053, 4179, 8219, 16427, 32771, 65581, 131081, 262183, 524327, 1048585, 2097157, 4194307, 8388641, 16777243, 33554441, 67108935, 134217767, 268435465, 536870917, 1073741907, 2147483657
Offset: 1
Keywords
Examples
a(5)=37, or 100101 in binary, representing the GF(2)[X] polynomial X^5+X^2+1, because it has degree 5 and is primitive, contrary to X^5, X^5+1, X^5+x^1, X^5+X^1+1 and X^5+X^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..330
- Rich Schroeppel, Hasty Pudding Cipher Specification on archive.org, (revised May 1999 ed.), June 1998. (The numbers are called "Swizpoly numbers" here, except that they start with 0 for some reason.)
- Index entries for sequences operating on GF(2)[X]-polynomials
Crossrefs
Programs
-
Maple
f:= proc(n) local k,L,i,X; for k from 2^n+1 by 2 do L:= convert(k,base,2); if Primitive(add(L[i]*X^(i-1),i=1..n+1)) mod 2 then return k fi od end proc: map(f, [$1..40]); # Robert Israel, Nov 05 2023
-
Mathematica
f[n_] := If[n == 1, 3, Module[{k, L, i, X}, For[k = 2^n+1, True, k = k+2, L = IntegerDigits[k, 2]; If[PrimitivePolynomialQ[Sum[L[[i]]*X^(i-1), {i, 1, n+1}], 2], Return[k]]]]]; Table[f[n], {n, 1, 40}] (* Jean-François Alcover, Mar 29 2024, after Robert Israel *)