cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132447 First primitive GF(2)[X] polynomial of degree n.

Original entry on oeis.org

3, 7, 11, 19, 37, 67, 131, 285, 529, 1033, 2053, 4179, 8219, 16427, 32771, 65581, 131081, 262183, 524327, 1048585, 2097157, 4194307, 8388641, 16777243, 33554441, 67108935, 134217767, 268435465, 536870917, 1073741907, 2147483657
Offset: 1

Views

Author

Francois R. Grieu, Aug 22 2007

Keywords

Examples

			a(5)=37, or 100101 in binary, representing the GF(2)[X] polynomial X^5+X^2+1, because it has degree 5 and is primitive, contrary to X^5, X^5+1, X^5+x^1, X^5+X^1+1 and X^5+X^2.
		

Crossrefs

a(n) is the smallest member of A091250 at least 2^n. A132448(n) = a(n)-2^n, giving a more compact representation. Cf. A132449, similar, with restriction to at most 5 terms. Cf. A132451, similar, with restriction to exactly 5 terms. Cf. A132453, similar, with restriction to minimal number of terms.

Programs

  • Maple
    f:= proc(n) local k,L,i,X;
       for k from 2^n+1 by 2 do
         L:= convert(k,base,2);
         if Primitive(add(L[i]*X^(i-1),i=1..n+1)) mod 2 then return k fi
       od
    end proc:
    map(f, [$1..40]); # Robert Israel, Nov 05 2023
  • Mathematica
    f[n_] := If[n == 1, 3, Module[{k, L, i, X}, For[k = 2^n+1, True, k = k+2, L = IntegerDigits[k, 2]; If[PrimitivePolynomialQ[Sum[L[[i]]*X^(i-1), {i, 1, n+1}], 2], Return[k]]]]];
    Table[f[n], {n, 1, 40}] (* Jean-François Alcover, Mar 29 2024, after Robert Israel *)