This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132464 #4 Jul 17 2020 00:34:51 %S A132464 0,0,0,0,0,1,48,735,6272,37044,169344,640332,2090880,6073353,16032016, %T A132464 39078039,89037312,191456720,391523328,766192176,1442244096, %U A132464 2622518073,4623197040,7925786407,13248326784,21641442900,34616067200,54311107500,83710972800 %N A132464 Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(6,n). %H A132464 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1). %F A132464 From _Robert Israel_, Jul 16 2020: (Start) %F A132464 a(n) = (n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400. %F A132464 G.f.: (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)*x^6/(1 - x)^12. (End) %p A132464 seq((n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400, n=1..50); # _Robert Israel_, Jul 16 2020 %Y A132464 See A132458 for further information. %K A132464 nonn %O A132464 1,7 %A A132464 Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007