A132582 First differences of A132581.
1, 1, 2, 1, 5, 3, 5, 1, 19, 14, 25, 6, 50, 14, 19, 1, 167, 148, 282, 84, 617, 215, 307, 20, 1692, 714, 1075, 84, 1692, 148, 167, 1, 7580, 7413, 14678, 5573, 34563, 15476, 23590, 2008, 109041, 59273, 95798, 9673, 163415, 18452, 21367, 168, 580655, 387651, 668175, 82404, 1226845, 169396, 201394, 2008
Offset: 0
Keywords
Links
- J. M. Aranda, Table of n, a(n) for n = 0..211 (first 91 terms from Robert Israel; terms 91..160 from Peter Koehler)
- J. M. Aranda, C++ program
- J. Berman and P. Köhler, On Dedekind Numbers and Two Sequences of Knuth, J. Int. Seq., Vol. 24 (2021), Article 21.10.7.
Crossrefs
See A132581 for further information.
Programs
-
Maple
N:= 63: Q:= [seq(convert(n+64,base,2),n=0..N)]: Incomp:= Array(0..N,0..N,proc(i,j) local d; d:= Q[i+1]-Q[j+1]; has(d,1) and has(d,-1) end proc): AntichainCount:= proc(S) option cache; local t,r; 1 + add(procname(select(s -> Incomp[s,S[t]],S[1..t-1])) , t = 1..nops(S)); end proc: seq(AntichainCount(select(s -> Incomp[s,n], [$1..n-1])), n=0..N); # Robert Israel, Mar 08 2017
-
Mathematica
M = 63; Q = Table[IntegerDigits[n+64, 2], {n, 0, M}]; Incomp[i_, j_] := Module[{d}, d = Q[[i+1]] - Q[[j+1]]; MemberQ[d, 1] && MemberQ[d, -1]]; AntichainCount[S_] := AntichainCount[S] = Module[{t, r}, 1 + Sum[AntichainCount[Select[S[[1 ;; t-1]], Incomp[#, S[[t]]]&]], {t, 1, Length[S]}]]; Table[AntichainCount[Range[0, n]], {n, -1, M}] // Differences (* Jean-François Alcover, Feb 09 2023, after Robert Israel *)
-
PARI
apply( A132582(n,e=exponent(n))={if(n++<3 || n==2<
A132581(2^e-2^valuation(n,2)), A132581(n)-A132581(n-1))}, [0..10]) \\ M. F. Hasler, Jun 03 2021
Formula
From M. F. Hasler, Jun 01 2021: (Start)
a(2^(k+1) - 2^m -1) = a(2^k + 2^m -1) = A132581(2^k - 2^m) for all k > m >= 0.
a(2^k -1) = A132581(0) =1, for all k>=0.
(End)
From Jose Aranda, Jun 09 2021: (Start)
A132581(2^k) = a(2^k + 2^((k-1)/2) -1) + a(2^k +2^((k+1)/2) -1), for k odd, k>0.
A132581(2^k)= 2*a(2^k + 2^(k/2) -1), for k even, k>=0.
(End)
Extensions
More terms from Robert Israel, Mar 08 2017
Extended by Peter Koehler, Jul 07 2017
Comments