This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132587 #9 Feb 07 2019 15:13:08 %S A132587 1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,2,5,1,1,1,1,1,3,1,2, %T A132587 3,1,1,1,1,1,1,1,1,5,1,1,1,2,1,4,1,1,1,2,3,2,1,6,1,1,1,1,1,1,1,2,1,1, %U A132587 1,1,1,2,1,1,1,1,1,1,1,1,1,2,3,4,1,1,1 %N A132587 Let b(k) be the k-th term of the flattened irregular array where the m-th row contains the positive divisors of m. (b(k) = A027750(k).) Let c(k) be the k-th term of the flattened irregular array where the m-th row contains the positive integers that are <= m and are coprime to m. (c(k) = A038566(k).) Then a(n) = gcd(b(n),c(n)). %H A132587 Rémy Sigrist, <a href="/A132587/b132587.txt">Table of n, a(n) for n = 1..10000</a> %H A132587 Rémy Sigrist, <a href="/A132587/a132587.gp.txt">PARI program for A132587</a> %e A132587 A027750: 1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, ... %e A132587 A038566: 1, 1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, ... %e A132587 The 14th terms of each list are 6 and 2. %e A132587 So a(14) = gcd(6,2) = 2. %o A132587 (PARI) See Links section. %Y A132587 Cf. A132588, A132589, A027750, A038566. %K A132587 nonn %O A132587 1,8 %A A132587 _Leroy Quet_, Aug 23 2007 %E A132587 More terms from _Rémy Sigrist_, Feb 07 2019