This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132592 #59 Jul 19 2024 21:47:28 %S A132592 0,8,288,9800,332928,11309768,384199200,13051463048,443365544448, %T A132592 15061377048200,511643454094368,17380816062160328,590436102659356800, %U A132592 20057446674355970888,681362750825443653408,23146276081390728245000,786292024016459316676608,26710782540478226038759688 %N A132592 X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0. %C A132592 Equivalently, numbers k such that both k/2 and k+1 are squares. - _Karl-Heinz Hofmann_, Sep 20 2022 %C A132592 Equivalently, numbers k such that the k-dimensional volume and total (k-1)-dimensional volume are equal, with side length being a positive integer, for all regular polyhedra constructible in k dimensions. - _Matt Moir_, Jul 09 2024 %H A132592 Seiichi Manyama, <a href="/A132592/b132592.txt">Table of n, a(n) for n = 0..500</a> %H A132592 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1). %F A132592 a(0)=0, a(1)=8 and a(n) = 34*a(n-1) - a(n-2) + 16. %F A132592 a(n) = (A056771(n) - 1)/2. - _Max Alekseyev_, Nov 13 2009 %F A132592 a(n) = sinh(2*n*arccosh(sqrt(2))^2) (n=0,1,2,3,...). - _Artur Jasinski_, Feb 10 2010 %F A132592 G.f.: -8*x*(x+1)/((x-1)*(x^2-34*x+1)). - _Colin Barker_, Oct 24 2012 %F A132592 a(n) = A055792(n+1)-1 = A001541(n)^2 - 1. - _Antti Karttunen_, Oct 03 2016 %t A132592 Table[Round[N[Sinh[2 n ArcCosh[Sqrt[2]]]^2, 100]], {n, 0, 20}] (* _Artur Jasinski_, Feb 10 2010 *) %t A132592 LinearRecurrence[{35, -35, 1}, {0, 8, 288}, 30] (* _Vincenzo Librandi_, Dec 24 2018 *) %o A132592 (Magma) I:=[0,8,288]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+ Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Dec 24 2018 %o A132592 (Python) %o A132592 A132592 = [0, 8] %o A132592 for n in range(2, 18): A132592.append(34 * A132592[-1] - A132592[-2] + 16) %o A132592 print(A132592) # _Karl-Heinz Hofmann_, Sep 20 2022 %Y A132592 Intersection between A132411 and A001105. %Y A132592 Cf. A007654. %Y A132592 Cf. A001541, A058331, A001079, A037270, A055792, A071253, A108741, A132592, A146311, A146312, A146313, A173115, A173116, A173121. %K A132592 nonn,easy %O A132592 0,2 %A A132592 _Mohamed Bouhamida_, Nov 14 2007 %E A132592 More terms from _Max Alekseyev_, Nov 13 2009