cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132629 Sigma(n)/Sum_digits(n) for n such that sigma(n) is divisible by Sum_digits(n).

This page as a plain text file.
%I A132629 #5 Oct 01 2015 17:40:47
%S A132629 1,2,18,6,4,2,21,9,10,24,8,8,6,16,12,14,28,12,12,9,9,5,8,26,217,51,72,
%T A132629 26,42,32,11,108,62,40,18,120,28,32,63,56,27,24,32,21,18,19,62,26,54,
%U A132629 24,24,12,32,30,16,36,21,26
%N A132629 Sigma(n)/Sum_digits(n) for n such that sigma(n) is divisible by Sum_digits(n).
%e A132629 n=147 -> sigma(n)=1+3+7+21+49+147=228 Sum_digits(n)=1+4+7=12 -> 228/12 = 19
%e A132629 n=177 -> sigma(n)=1+3+59+177=240 Sum_digits(n)=1+7+7=15 -> 240/15 = 16
%p A132629 with(numtheory); P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; j:=sigma(i)/w; if trunc(j)=j then print(j); fi; od; end: P(200);
%t A132629 Select[Table[DivisorSigma[1,n]/Total[IntegerDigits[n]],{n,300}], IntegerQ] (* _Harvey P. Dale_, Oct 01 2015 *)
%Y A132629 Cf. A007691, A054030, A132628.
%K A132629 easy,nonn
%O A132629 0,2
%A A132629 _Paolo P. Lava_ and _Giorgio Balzarotti_, Aug 24 2007