cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132641 Number of partitions of n, p(n), raised to power p(n).

This page as a plain text file.
%I A132641 #20 Nov 04 2024 18:10:30
%S A132641 1,1,4,27,3125,823543,285311670611,437893890380859375,
%T A132641 341427877364219557396646723584,
%U A132641 205891132094649000000000000000000000000000000,150130937545296572356771972164254457814047970568738777235893533016064
%N A132641 Number of partitions of n, p(n), raised to power p(n).
%C A132641 a(n) is also the number of endofunctions on the partitions of n. - _Max Sills_, Feb 07 2012
%F A132641 a(n) = p(n)^p(n).
%F A132641 a(n) = A000312(A000041(n)). - _Alois P. Heinz_, Nov 04 2024
%e A132641 a(5) = 823543 because p(5) = 7 and we can write 823543 = 7^7 or 823543 = 7*7*7*7*7*7*7.
%p A132641 a:= n-> (p-> p^p)(combinat[numbpart](n)):
%p A132641 seq(a(n), n=0..11);  # _Alois P. Heinz_, Nov 04 2024
%t A132641 Table[ PartitionsP@n ^ PartitionsP@n, {n, 10}] (* _Robert G. Wilson v_, Aug 28 2007 *)
%Y A132641 Cf. A000041, A000312, A008973, A008974, A051674.
%K A132641 nonn
%O A132641 0,3
%A A132641 _Omar E. Pol_, Aug 24 2007
%E A132641 More terms from _Robert G. Wilson v_, Aug 28 2007
%E A132641 a(0)=1 prepended by _Alois P. Heinz_, Nov 04 2024