This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132641 #20 Nov 04 2024 18:10:30 %S A132641 1,1,4,27,3125,823543,285311670611,437893890380859375, %T A132641 341427877364219557396646723584, %U A132641 205891132094649000000000000000000000000000000,150130937545296572356771972164254457814047970568738777235893533016064 %N A132641 Number of partitions of n, p(n), raised to power p(n). %C A132641 a(n) is also the number of endofunctions on the partitions of n. - _Max Sills_, Feb 07 2012 %F A132641 a(n) = p(n)^p(n). %F A132641 a(n) = A000312(A000041(n)). - _Alois P. Heinz_, Nov 04 2024 %e A132641 a(5) = 823543 because p(5) = 7 and we can write 823543 = 7^7 or 823543 = 7*7*7*7*7*7*7. %p A132641 a:= n-> (p-> p^p)(combinat[numbpart](n)): %p A132641 seq(a(n), n=0..11); # _Alois P. Heinz_, Nov 04 2024 %t A132641 Table[ PartitionsP@n ^ PartitionsP@n, {n, 10}] (* _Robert G. Wilson v_, Aug 28 2007 *) %Y A132641 Cf. A000041, A000312, A008973, A008974, A051674. %K A132641 nonn %O A132641 0,3 %A A132641 _Omar E. Pol_, Aug 24 2007 %E A132641 More terms from _Robert G. Wilson v_, Aug 28 2007 %E A132641 a(0)=1 prepended by _Alois P. Heinz_, Nov 04 2024