cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132664 a(1)=1, a(2)=2, a(n) = a(n-1) + n if the minimal positive integer not yet in the sequence is greater than a(n-1), else a(n) = a(n-1) - 1.

Original entry on oeis.org

1, 2, 5, 4, 3, 9, 8, 7, 6, 16, 15, 14, 13, 12, 11, 10, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48
Offset: 1

Views

Author

Hieronymus Fischer, Sep 15 2007

Keywords

Comments

Also: a(1)=1, a(2)=2, a(n) = maximal positive number < a(n-1) not yet in the sequence, if it exists, else a(n) = a(n-1) + n.
Also: a(1)=1, a(2)=2, a(n) = a(n-1) - 1, if a(n-1) - 1 > 0 and has not been encountered so far, else a(n) = a(n-1) + n.
A permutation of the positive integers. The sequence is self-inverse, in that a(a(n)) = n.

Crossrefs

For an analog concerning Fibonacci numbers see A132665.
See A132666-A132674 for sequences with a similar recurrence rule.

Formula

G.f.: g(x) = (L'(x) - x^2 - 1/(1-x))/(1-x) where L(x) = Sum_{k>=0} x^Lucas(k) and Lucas(k) = A000032(k). L(x) is the g.f. of the Lucas indicator sequence (see A102460) and L'(x) = derivative of L(x).
a(n) = Lucas(Lucas_inverse(n+1)+2) - n - 3 = A000032(A130241(n+1) + 2) - n - 3 for n > 1.
a(n) = A000032(floor(log_phi(n + 3/2)) + 2) - n - 3 for n > 1, where phi = (1 + sqrt(5))/2 is the golden ratio.