This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132731 #16 Feb 14 2021 18:38:53 %S A132731 1,1,1,1,2,1,1,4,4,1,1,6,10,6,1,1,8,18,18,8,1,1,10,28,38,28,10,1,1,12, %T A132731 40,68,68,40,12,1,1,14,54,110,138,110,54,14,1,1,16,70,166,250,250,166, %U A132731 70,16,1,1,18,88,238,418,502,418,238,88,18,1 %N A132731 Triangle T(n,k) = 2 * binomial(n,k) - 2 with T(n,0) = T(n,n) = 1, read by rows. %H A132731 G. C. Greubel, <a href="/A132731/b132731.txt">Rows n = 0..100 of the triangle, flattened</a> %F A132731 T(n, k) = 2*A007318 + A103451 - 2*A000012, an infinite lower triangular matrix. %F A132731 From _G. C. Greubel_, Feb 14 2021: (Start) %F A132731 T(n, k) = 2*binomial(n, k) - 2 with T(n, 0) = T(n, n) = 1. %F A132731 T(n, k) = 2*A132044(n, k) with T(n, 0) = T(n, n) = 1. %F A132731 Sum_{k=0..n} T(n, k) = 2^(n+1) - 2*n - [n=0] = A132732(n). (End) %e A132731 First few rows of the triangle are: %e A132731 1; %e A132731 1, 1; %e A132731 1, 2, 1; %e A132731 1, 4, 4, 1; %e A132731 1, 6, 10, 6, 1; %e A132731 1, 8, 18, 18, 8, 1; %e A132731 1, 10, 28, 38, 28, 10, 1; %e A132731 1, 12, 40, 68, 68, 40, 12, 1; %e A132731 ... %t A132731 T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 2]; %t A132731 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 14 2021 *) %o A132731 (PARI) t(n,k) = 2*binomial(n, k) + ((k==0) || (k==n)) - 2*(k<=n); \\ _Michel Marcus_, Feb 12 2014 %o A132731 (Sage) %o A132731 def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 2 %o A132731 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 14 2021 %o A132731 (Magma) %o A132731 T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 2 >; %o A132731 [T(n,k): k in [0..n], n in [0..12]]; // __G. C. Greubel_, Feb 14 2021 %Y A132731 Cf. A000012, A007318, A103451, A132044, A132732 (row sums). %K A132731 nonn,tabl %O A132731 0,5 %A A132731 _Gary W. Adamson_, Aug 26 2007 %E A132731 Corrected by _Jeremy Gardiner_, Feb 02 2014 %E A132731 More terms from _Michel Marcus_, Feb 12 2014