This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132733 #9 Feb 14 2021 18:39:09 %S A132733 1,1,1,1,3,1,1,7,7,1,1,11,19,11,1,1,15,35,35,15,1,1,19,55,75,55,19,1, %T A132733 1,23,79,135,135,79,23,1,1,27,107,219,275,219,107,27,1,1,31,139,331, %U A132733 499,499,331,139,31,1,1,35,175,475,835,1003,835,475,175,35,1 %N A132733 Triangle T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1, read by rows. %H A132733 G. C. Greubel, <a href="/A132733/b132733.txt">Rows n = 0..100 of the triangle, flattened</a> %F A132733 T(n, k) = 2*A132731 - A000012, an infinite lower triangular matrix. %F A132733 From _G. C. Greubel_, Feb 14 2021: (Start) %F A132733 T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1. %F A132733 Sum_{k=0..n} T(n, k) = 2^(n + 2) - (5*n + 1) - 2*[n=0] = A132734(n). (End) %e A132733 First few rows of the triangle are: %e A132733 1; %e A132733 1, 1; %e A132733 1, 3, 1; %e A132733 1, 7, 7, 1; %e A132733 1, 11, 19, 11, 1; %e A132733 1, 15, 35, 35, 15, 1; %e A132733 1, 19, 55, 75, 55, 19, 1; %e A132733 ... %t A132733 T[n_, k_]:= If[k==0 || k==n, 1, 4*Binomial[n, k] - 5]; %t A132733 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 14 2021 *) %o A132733 (PARI) t(n,k) = 4*binomial(n, k) + 2*((k==0) || (k==n)) - 5*(k<=n); \\ _Michel Marcus_, Feb 12 2014 %o A132733 (Sage) %o A132733 def T(n, k): return 1 if (k==0 or k==n) else 4*binomial(n, k) - 5 %o A132733 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 14 2021 %o A132733 (Magma) %o A132733 T:= func< n,k | k eq 0 or k eq n select 1 else 4*Binomial(n,k) - 5 >; %o A132733 [T(n,k): k in [0..n], n in [0..12]]; // __G. C. Greubel_, Feb 14 2021 %Y A132733 Cf. A132731, A132734. %K A132733 nonn,tabl %O A132733 0,5 %A A132733 _Gary W. Adamson_, Aug 26 2007 %E A132733 More terms from _Michel Marcus_, Feb 12 2014