This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132749 #16 Feb 16 2021 09:46:24 %S A132749 1,2,1,2,2,1,2,3,3,1,2,4,6,4,1,2,5,10,10,5,1,2,6,15,20,15,6,1,2,7,21, %T A132749 35,35,21,7,1,2,8,28,56,70,56,28,8,1,2,9,36,84,126,126,84,36,9,1,2,10, %U A132749 45,120,210,252,210,120,45,10,1,2,11,55,165,330,462,462,330,165,55,11,1 %N A132749 Triangle T(n,k) = binomial(n, k) with T(n, 0) = 2, read by rows. %C A132749 Add 1 to all but the top entry in the left column of the Pascal matrix. - _R. J. Mathar_, Jan 18 2013 %H A132749 G. C. Greubel, <a href="/A132749/b132749.txt">Rows n = 0..100 of the triangle, flattened</a> %F A132749 T(n,k) = A103451(n,k) * A007318(n,k), an infinite lower triangular matrix. %F A132749 From _G. C. Greubel_, Feb 16 2021: (Start) %F A132749 T(n,k) = binomial(n, k) with T(n, 0) = 2 for n>0. %F A132749 Sum_{k=0..n} T(n, k) = A083318(n) = 2^n + 1^n - 0^n. (End) %e A132749 First few rows of the triangle are: %e A132749 1; %e A132749 2, 1; %e A132749 2, 2, 1; %e A132749 2, 3, 3, 1; %e A132749 2, 4, 6, 4, 1; %e A132749 2, 5, 10, 10, 5, 1; %e A132749 ... %t A132749 T[n_, k_]:= If[k==n, 1, If[k==0, 2, Binomial[n, k]]]; %t A132749 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Feb 16 2021 *) %o A132749 (Sage) %o A132749 def A132749(n,k): return 1 if k==n else 2 if k==0 else binomial(n,k) %o A132749 flatten([[A132749(n,k) for k in [0..n]] for n in [0..12]]) # _G. C. Greubel_, Feb 16 2021 %o A132749 (Magma) %o A132749 A132749:= func< n,k | k eq n select 1 else k eq 0 select 2 else Binomial(n,k) >; %o A132749 [A132749(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 16 2021 %Y A132749 Cf. A007318, A083318 (row sums), A103451. %K A132749 nonn,easy,tabl,less %O A132749 0,2 %A A132749 _Gary W. Adamson_, Aug 28 2007 %E A132749 More terms added by _G. C. Greubel_, Feb 16 2021