cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132764 a(n) = n*(n+22).

This page as a plain text file.
%I A132764 #34 Mar 14 2022 02:45:02
%S A132764 0,23,48,75,104,135,168,203,240,279,320,363,408,455,504,555,608,663,
%T A132764 720,779,840,903,968,1035,1104,1175,1248,1323,1400,1479,1560,1643,
%U A132764 1728,1815,1904,1995,2088,2183,2280,2379,2480,2583,2688,2795,2904,3015,3128,3243,3360
%N A132764 a(n) = n*(n+22).
%H A132764 G. C. Greubel, <a href="/A132764/b132764.txt">Table of n, a(n) for n = 0..5000</a>
%H A132764 Felix P. Muga II, <a href="https://www.researchgate.net/publication/267327689_Extending_the_Golden_Ratio_and_the_Binet-de_Moivre_Formula">Extending the Golden Ratio and the Binet-de Moivre Formula</a>, Preprint on ResearchGate, March 2014.
%H A132764 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A132764 a(n) = n*(n + 22).
%F A132764 a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - _Vincenzo Librandi_, Aug 03 2010
%F A132764 a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Harvey P. Dale_, May 02 2012
%F A132764 From _Amiram Eldar_, Jan 16 2021: (Start)
%F A132764 Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.
%F A132764 Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)
%F A132764 From _G. C. Greubel_, Mar 14 2022: (Start)
%F A132764 G.f.: x*(23 - 21*x)/(1-x)^3.
%F A132764 E.g.f.: x*(23 + x)*exp(x). (End)
%e A132764 a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - _Vincenzo Librandi_, Aug 03 2010
%t A132764 Table[n(n+22),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,23,48},50] (* _Harvey P. Dale_, May 02 2012 *)
%o A132764 (PARI) a(n)=n*(n+22) \\ _Charles R Greathouse IV_, Oct 07 2015
%o A132764 (Sage) [n*(n+22) for n in (0..50)] # _G. C. Greubel_, Mar 14 2022
%Y A132764 Cf. A001008, A002378, A005563, A028347, A028552, A028557, A028560, A028563, A028566, A028569, A098603, A098847, A098848, A098849, A098850, A102928, A120071, A132759, A132760, A132761, A132762, A132763, A132765, A132766, A132767.
%K A132764 easy,nonn
%O A132764 0,2
%A A132764 _Omar E. Pol_, Aug 28 2007