This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132774 #23 Mar 25 2024 15:03:06 %S A132774 1,2,3,0,4,5,0,0,6,7,0,0,0,8,9,0,0,0,0,10,11,0,0,0,0,0,12,13,0,0,0,0, %T A132774 0,0,14,15,0,0,0,0,0,0,0,16,17,0,0,0,0,0,0,0,0,18,19,0,0,0,0,0,0,0,0, %U A132774 0,20,21,0,0,0,0,0,0,0,0,0,0,22,23 %N A132774 A natural number operator. %C A132774 Row sums = A016813: (1, 5, 9, 13, ...). %C A132774 A132774 * [1, 2, 3, ...] = A033951. %H A132774 Stefano Spezia, <a href="/A132774/b132774.txt">First 150 rows of the triangle, flattened</a> %F A132774 As an infinite lower triangular matrix, (1, 3, 5, ...) in the main diagonal and (2, 4, 6, ...) in the subdiagonal; with the rest zeros. %F A132774 From _Stefano Spezia_, Dec 21 2021: (Start) %F A132774 T(n, k) = 2*n - 1 if n = k, T(n, k) = 2*(n - 1) if n - k = 1, otherwise T(n, k) = 0. %F A132774 G.f.: x*y*(1 + x*(2 + y))/(1 - x*y)^2. (End) %e A132774 First few rows of the triangle are: %e A132774 1; %e A132774 2, 3; %e A132774 0, 4, 5; %e A132774 0, 0, 6, 7; %e A132774 0, 0, 0, 8, 9; %e A132774 0, 0, 0, 0, 10, 11; %e A132774 ... %t A132774 T[n_,k_]:=If[n==k,2n-1,If[n-k==1,2(n-1),0]]; Flatten[Table[T[n,k],{n,12},{k,n}]] (* _Stefano Spezia_, Dec 21 2021 *) %t A132774 Join[{1},Flatten[{#,PadRight[{},#[[1]]/2,0]}&/@Partition[Range[2,30],2]]] (* _Harvey P. Dale_, Mar 24 2024 *) %t A132774 Join[{1},Flatten[Table[Join[Range[2n,2n+1],PadRight[{},n,0]],{n,20}]]] (* _Harvey P. Dale_, Mar 25 2024 *) %Y A132774 Cf. A016813 (row sums), A033951, A060747 (main diagonal). %K A132774 nonn,tabl %O A132774 1,2 %A A132774 _Gary W. Adamson_, Aug 28 2007 %E A132774 More terms from _Stefano Spezia_, Dec 21 2021