cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132799 Decimal expansion of the convergent to the sum of (1/8)^p where p ranges over the set of prime numbers.

Original entry on oeis.org

0, 1, 7, 6, 0, 9, 1, 1, 9, 5, 3, 3, 5, 1, 7, 9, 6, 5, 3, 8, 5, 2, 7, 8, 4, 9, 7, 3, 5, 6, 6, 3, 1, 3, 4, 2, 6, 2, 3, 8, 1, 8, 1, 8, 0, 1, 0, 7, 9, 4, 9, 6, 9, 9, 4, 0, 6, 4, 8, 0, 1, 2, 6, 8, 4, 1, 2, 8, 7, 5, 4, 9, 4, 1, 2, 3, 2, 1, 4, 4, 4, 7, 2, 5, 7, 5, 7, 7, 3, 6, 2, 4, 6, 3, 2, 1, 9, 6
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Examples

			0.01760911...
		

Crossrefs

Cf. A000720, A132822 (base 7), A132821 (base 9).

Programs

  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }

Formula

Equals 7 * Sum_{k>=1} pi(k)/8^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020

Extensions

Offset corrected R. J. Mathar, Jan 26 2009