This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132804 #36 Feb 27 2024 03:00:37 %S A132804 0,6,42,342,2730,21846,174762,1398102,11184810,89478486,715827882, %T A132804 5726623062,45812984490,366503875926,2932031007402,23456248059222, %U A132804 187649984473770,1501199875790166,12009599006321322,96076792050570582,768614336404564650 %N A132804 A trisection of A024495. %H A132804 Vincenzo Librandi, <a href="/A132804/b132804.txt">Table of n, a(n) for n = 0..300</a> %H A132804 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,8). %F A132804 G.f.: 6*x/(1-7*x-8*x^2). a(n+1) = 7*a(n)+8*a(n-1) for n>=1, a(0)=0, a(1)=6. - _Philippe Deléham_, Nov 19 2007 %F A132804 a(n) = 2*A132805(n). - _R. J. Mathar_, Jun 07 2011 %F A132804 From _Oboifeng Dira_, Jun 05 2020: (Start) %F A132804 a(n) = A078008(3n+1). Second trisection of A078008. %F A132804 a(n) = 6*A015565(n). %F A132804 a(n) = Sum_{k=0..n} binomial(3*n+1,3*k+2). (End) %p A132804 A132804:=n->-(2/3)*(-1)^n+(2/3)*8^n: seq(A132804(n), n=0..30); # _Wesley Ivan Hurt_, Apr 14 2017 %t A132804 LinearRecurrence[{7,8},{0,6},30] (* _Harvey P. Dale_, Mar 29 2018 *) %o A132804 (Magma) [-(2/3)*(-1)^n+(2/3)*8^n: n in [0..25]]; // _Vincenzo Librandi_, Jun 08 2011 %o A132804 (PARI) a(n)=2*(8^n-(-1)^n)/3 \\ _Charles R Greathouse IV_, Jun 08 2011 %Y A132804 Cf. A132805, A078008, A015565. %K A132804 nonn,easy %O A132804 0,2 %A A132804 _Paul Curtz_, Nov 18 2007