cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132822 Decimal expansion of Sum_{n >= 1} 1/7^prime(n).

This page as a plain text file.
%I A132822 #15 Aug 11 2020 10:00:42
%S A132822 0,2,3,3,8,4,3,2,8,9,6,0,3,5,3,7,3,9,9,0,9,8,5,9,8,2,2,4,9,5,9,1,2,3,
%T A132822 7,3,4,8,9,3,4,0,9,3,5,9,3,5,9,4,4,8,6,9,6,1,9,9,8,2,8,8,4,6,5,6,5,2,
%U A132822 3,5,6,8,2,7,5,4,6,8,0,5,1,2,1,2,1,3,6,2,1,8,6,3,1,0,7,6,2,7
%N A132822 Decimal expansion of Sum_{n >= 1} 1/7^prime(n).
%C A132822 Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-7 expansion. - _M. F. Hasler_, Jul 05 2017
%F A132822 From _Amiram Eldar_, Aug 11 2020: (Start)
%F A132822 Equals Sum_{k>=1} 1/A269327(k).
%F A132822 Equals 6 * Sum_{k>=1} pi(k)/7^(k+1), where pi(k) = A000720(k). (End)
%e A132822 0.023384328960353739909859822495912373489340935935944869619982884656523568...
%o A132822 (PARI) /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
%o A132822 (PARI) suminf(n=1, 1/7^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - _M. F. Hasler_, Jul 05 2017
%Y A132822 Cf. A000720, A051006 (analog for base 2), A132800 (analog for base 3), A132806 (analog for base 4), A132797 (analog for base 5), A132817 (analog for base 6), A010051 (characteristic function of the primes), A132799 (base 8), A269327.
%K A132822 cons,nonn
%O A132822 0,2
%A A132822 _Cino Hilliard_, Nov 17 2007
%E A132822 Offset corrected by _R. J. Mathar_, Feb 05 2009
%E A132822 Edited by _M. F. Hasler_, Jul 05 2017