This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132861 #17 Feb 28 2021 12:05:46 %S A132861 2,26,53,532,211,1342,2179,15704,16033,31424,24281,31430,31433,155960, %T A132861 58831,360698,206699,370312,370315,492170,1357261,1357264,1357267, %U A132861 2010802,2010805,4652428,12485141,17051788,17051791,17051794,11117213,20831416,10938023,20831422 %N A132861 Smallest number at distance 3n from nearest prime (variant 2). %C A132861 Let f(m) be the distance to the nearest prime as defined in A051700(m). Then a(n) = min {m: f(m) = 3n} for n > 0. A132470 uses A051699(m) to define the distance. a(n) <= A132470(n) because here primes at the start or end of a prime gap of size 3n may be picked, which would be discarded in A132470 for n>0; this gives a chance to minimize m here further than in A132470. %H A132861 Michael S. Branicky, <a href="/A132861/b132861.txt">Table of n, a(n) for n = 0..76</a> %H A132861 Michael S. Branicky, <a href="/A132861/a132861.py.txt">Python program</a> %F A132861 a(n) = min {m : A051700(m) = 3n} for n > 0. %F A132861 a(n) = A051652(3*n). [From _R. J. Mathar_, Jul 22 2009] %p A132861 A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: a := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 3 * n then RETURN(m) ; fi ; od: fi ; end: seq(a(n),n=0..18); %o A132861 (Python) # see link for faster program %o A132861 from sympy import prevprime, nextprime %o A132861 def A051700(n): %o A132861 return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n) %o A132861 def a(n): %o A132861 if n == 0: return 2 %o A132861 m = 0 %o A132861 while A051700(m) != 3*n: m += 1 %o A132861 return m %o A132861 print([a(n) for n in range(13)]) # _Michael S. Branicky_, Feb 26 2021 %Y A132861 Cf. A132470, A051700. %K A132861 nonn %O A132861 0,1 %A A132861 _R. J. Mathar_, Nov 18 2007 %E A132861 7 more terms from _R. J. Mathar_, Jul 22 2009 %E A132861 4 more terms from _R. J. Mathar_, Aug 21 2018 %E A132861 a(30) and beyond and edits from _Michael S. Branicky_, Feb 26 2021