This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132864 #28 Jun 05 2021 04:38:35 %S A132864 1,4,36,424,5716,83544,1288296,20637264,340116276,5730014584, %T A132864 98241641656,1708602483504,30070563388936,534554579527024, %U A132864 9584333758817616,173120386421418144,3147337611202622196,57545643875054919864,1057492201661230657176 %N A132864 Expansion of 1/(1-4x*c(5x)), where c(x) is the g.f. of A000108. %C A132864 Hankel transform is A135420. - _Paul Barry_, Sep 15 2009 %H A132864 Vincenzo Librandi, <a href="/A132864/b132864.txt">Table of n, a(n) for n = 0..200</a> %F A132864 a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^k*5^(n-k). - _Philippe Deléham_, Dec 11 2007 %F A132864 Integral representation: a(n) = (2/Pi)*Integral_{x=0..20} x^n*sqrt(x*(20-x))/(x*(16+x)). - _Paul Barry_, Sep 15 2009 %F A132864 From _Gary W. Adamson_, Jul 18 2011: (Start) %F A132864 a(n) = upper left term in M^n, M = an infinite square production matrix as follows: %F A132864 4, 4, 0, 0, 0, 0, ... %F A132864 5, 5, 5, 0, 0, 0, ... %F A132864 5, 5, 5, 5, 0, 0, ... %F A132864 5, 5, 5, 5, 5, 0, ... %F A132864 5, 5, 5, 5, 5, 5, ... %F A132864 ... (End) %F A132864 Conjecture: n*a(n) + 2*(15-2*n)*a(n-1) + 160*(3-2*n)*a(n-2) = 0. - _R. J. Mathar_, Nov 15 2011 %F A132864 a(n) ~ 4^n * 5^(n+1) / (9 * n^(3/2) * sqrt(Pi)). - _Vaclav Kotesovec_, Feb 08 2014 %t A132864 CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-20*x])/(10*x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 08 2014 *) %t A132864 Table[5^(n + 1) * CatalanNumber[n] * Hypergeometric2F1[1, n + 1/2, n + 2, -5/4]/4, {n, 0, 18}] (* _Vaclav Kotesovec_, Jun 05 2021 *) %Y A132864 Cf. A000108, A039599, A135420. %K A132864 nonn %O A132864 0,2 %A A132864 _Philippe Deléham_, Nov 18 2007 %E A132864 More terms added by _Paul Barry_, Sep 15 2009 %E A132864 More terms from _Vincenzo Librandi_, Feb 11 2014