A132886 Triangle read by rows: T(n,k) is the number of paths in the right half-plane, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k U steps (0 <= k <= floor(n/2)).
1, 1, 2, 2, 3, 6, 5, 18, 6, 8, 44, 30, 13, 102, 120, 20, 21, 222, 390, 140, 34, 466, 1140, 700, 70, 55, 948, 3066, 2800, 630, 89, 1884, 7770, 9800, 3780, 252, 144, 3672, 18780, 31080, 17850, 2772, 233, 7044, 43710, 91560, 72450, 19404, 924, 377, 13332, 98610
Offset: 0
Examples
Triangle starts: 1; 1; 2, 2; 3, 6; 5, 18, 6; 8, 44, 30; 13, 102, 120, 20; T(3,1)=6 because we have hUD, UhD, UDh, hDU, DhU and DUh.
Programs
-
Maple
G:=1/sqrt((1-z-z^2)^2-4*t*z^2): Gser:=simplify(series(G,z=0,17)): for n from 0 to 13 do P[n]:= sort(coeff(Gser,z,n)) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
Formula
G.f.: G(t,z) = 1/sqrt((1-z-z^2)^2 - 4tz^2).
Comments