A132884 Triangle read by rows: T(n,k) is the number of paths in the right half-plane from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k h=(1,0) steps (0<=k<=n).
1, 0, 1, 3, 0, 1, 0, 8, 0, 1, 13, 0, 15, 0, 1, 0, 57, 0, 24, 0, 1, 63, 0, 156, 0, 35, 0, 1, 0, 384, 0, 340, 0, 48, 0, 1, 321, 0, 1380, 0, 645, 0, 63, 0, 1, 0, 2505, 0, 3800, 0, 1113, 0, 80, 0, 1, 1683, 0, 11145, 0, 8855, 0, 1792, 0, 99, 0, 1, 0, 16008, 0, 37065, 0, 18368, 0, 2736, 0
Offset: 0
Examples
Triangle starts: 1; 0, 1; 3, 0, 1; 0, 8, 0, 1; 13, 0, 15, 0, 1; 0, 57, 0, 24, 0, 1; T(3,1)=8 because we have hH, Hh, hUD, UhD, UDh, hDU, DhU and DUh.
Programs
-
Maple
G:=1/sqrt((1-t*z-z^2)^2-4*z^2): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) end do; # yields sequence in triangular form
Formula
G.f. = 1/sqrt((1-tz-z^2)^2-4z^2).
Comments