cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132887 Number of symmetric paths in the first quadrant, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

This page as a plain text file.
%I A132887 #7 Jul 22 2022 08:34:37
%S A132887 1,1,3,2,8,6,23,17,68,51,205,154,627,473,1937,1464,6032,4568,18900,
%T A132887 14332,59519,45187,188211,143024,597241,454217,1900821,1446604,
%U A132887 6065180,4618576,19396027
%N A132887 Number of symmetric paths in the first quadrant, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).
%C A132887 a(2n+1)=A059398(n); a(2n)=A059398(n-1)+A059398(n). The number of all paths in the first quadrant, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) is A128720(n).
%F A132887 G.f.=2(1+z+z^2)/[1-3z^2-z^4+sqrt((1+z^2-z^4)(1-3z^2-z^4))].
%F A132887 D-finite with recurrence (n+2)*a(n) +n*a(n-1) +(-n-6)*a(n-2) -2*n*a(n-3) +7*(-n+2)*a(n-4) +5*(-n+4)*a(n-5) +3*(-n+6)*a(n-6) +2*(n-8)*a(n-7) +(3*n-26)*a(n-8) +(n-8)*a(n-9) +(n-10)*a(n-10)=0. - _R. J. Mathar_, Oct 08 2016
%e A132887 a(4)=8 because we have hhhh, hHh, HH, hUDh, UDUD, UhhD, UHD and UUDD.
%p A132887 G:=(2*(1+z+z^2))/(1-3*z^2-z^4+sqrt((1+z^2-z^4)*(1-3*z^2-z^4))): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=0..30);
%Y A132887 Cf. A128720, A059398.
%K A132887 nonn
%O A132887 0,3
%A A132887 _Emeric Deutsch_, Sep 05 2007