cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132891 Sum of the heights of all left factors of Dyck paths of length n.

This page as a plain text file.
%I A132891 #19 Dec 19 2022 10:32:01
%S A132891 1,3,6,14,28,61,121,257,508,1065,2103,4372,8634,17842,35254,72524,
%T A132891 143396,293968,581630,1189102,2354168,4802331,9512984,19370764,
%U A132891 38391332,78056544,154773135,314281350,623427154,1264546021,2509378855,5085153822,10094528146
%N A132891 Sum of the heights of all left factors of Dyck paths of length n.
%C A132891 See A132890 for the statistic "height" on left factors of Dyck paths.
%H A132891 Alois P. Heinz, <a href="/A132891/b132891.txt">Table of n, a(n) for n = 1..700</a>
%H A132891 Toufik Mansour and Gokhan Yilidirim, <a href="https://www.doi.org/10.3906/mat-1901-86">Longest increasing subsequences in involutions avoiding patterns of length three</a>, Turkish Journal of Mathematics (2019), Section 2.2.
%F A132891 a(n) = Sum_{k=1..n} k * A132890(n,k).
%e A132891 a(4)=14 because the six left factors of Dyck paths of length 4 are UDUD, UDUU, UUDD, UUDU, UUUD and UUUU, having heights 1, 2, 2, 2, 3 and 4, respectively.
%p A132891 v := ((1-sqrt(1-4*z^2))*1/2)/z: g := proc (k) options operator, arrow: v^k*(1+v)*(1+v^2)/((1+v^(k+1))*(1+v^(k+2))) end proc: T := proc (n, k) options operator, arrow; coeff(series(g(k), z = 0, 70), z, n) end proc: seq(add(k*T(n, k), k = 1 .. n), n = 1 .. 30);
%t A132891 b[x_, y_, k_] := b[x, y, k] = If[x == 0, z^k, If[y > 0, b[x - 2, y - 1, k], 0] + b[x - 2, y + 1, Max[y + 1, k]]];
%t A132891 T[n_] := Table[Coefficient[b[2n, 0, 0], z, i], {i, 1, n}];
%t A132891 a[n_] := T[n].Range[n];
%t A132891 Array[a, 33] (* _Jean-François Alcover_, Nov 10 2020, after _Alois P. Heinz_ in A132890 *)
%Y A132891 Cf. A132890.
%K A132891 nonn
%O A132891 1,2
%A A132891 _Emeric Deutsch_, Sep 08 2007