cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132900 Colored Motzkin paths where each of the steps has three possible colors.

This page as a plain text file.
%I A132900 #35 Feb 05 2024 10:52:03
%S A132900 1,3,18,108,729,5103,37179,277749,2119203,16435305,129199212,
%T A132900 1027098306,8243181351,66698502705,543507899346,4456368744804,
%U A132900 36738955831707,304354824214977,2532328310730798,21152326520189628,177310026608555619,1491097815365481477
%N A132900 Colored Motzkin paths where each of the steps has three possible colors.
%H A132900 Vincenzo Librandi, <a href="/A132900/b132900.txt">Table of n, a(n) for n = 0..200</a>
%F A132900 G.f.: (1-3*x-sqrt(1-6*x-27*x^2))/(18*x^2).
%F A132900 G.f. is the reversion of x/(1+3*x+9*x^2).
%F A132900 a(n) = 3^n * A001006(n).
%F A132900 a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*3^(n-2k)*3^k*3^k, where C(n) = A000108(n).
%F A132900 a(n) = (1/(2*Pi))*Integral_{x=-3..9} x^n*sqrt(27 + 6x - x^2)/9.
%F A132900 Conjecture: (n+2)*a(n) - 3*(2*n+1)*a(n-1) + 27*(1-n)*a(n-2) = 0. - _R. J. Mathar_, Nov 14 2011
%F A132900 a(n) ~ 3^(2*n+3/2)/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 20 2012
%F A132900 G.f.: 1/G(x), with G(x) = 1-3*x-9*x^2/G(x) (Jacobi continued fraction). - _Nikolaos Pantelidis_, Feb 01 2023
%F A132900 From _Peter Bala_, Feb 02 2024: (Start)
%F A132900 G.f.: 1/(1 + 3*x)*c(3*x/(1 + 3*x))^2 = 1/(1 - 9*x)*c(-3*x/(1 - 9*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers.
%F A132900 a(n) = 3^n *Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*Catalan(k+1).
%F A132900 a(n) = 9^n * Sum_{k = 0..n} (-3)^(-k)*binomial(n,k)*Catalan(k+1). (End)
%p A132900 seq(9^n * simplify(hypergeom([3/2, -n], [3], 4/3)), n = 0..20); # _Peter Bala_, Feb 04 2024
%t A132900 CoefficientList[Series[(1-3*x-Sqrt[1-6*x-27*x^2])/(18*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%o A132900 (PARI) my(x='x+O('x^50)); Vec((1-3*x-sqrt(1-6*x-27*x^2))/(18*x^2)) \\ _G. C. Greubel_, Mar 21 2017
%Y A132900 Cf. A001006, A129400.
%K A132900 easy,nonn
%O A132900 0,2
%A A132900 _Paul Barry_, Sep 04 2007