This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132911 #13 Aug 06 2024 15:19:50 %S A132911 1,2,18,360,12600,680400,52390800,5448643200,735566832000, %T A132911 125046361440000,26134689540960000,6585941764321920000, %U A132911 1969196587532254080000,689218805636288928000000,279133616282697015840000000,129517997955171415349760000000,68255984922375335889323520000000 %N A132911 a(n) = (n+1)*(2*n)!/2^n. %C A132911 Define T(n,k)=((1+(-1)^n)/2)*C(k-1+n/2, n/2)*n!/2^(n/2). Then T(n,k) has e.g.f. 1/sum{j=0..k, C(k,j)*(-1)^j*x^(2j)/2^j}. T(n,1) is A000680 with interpolated zeros. T(n,3) is A132912. %H A132911 Daniele Marchei, Emanuela Merelli, and Andrew Francis, <a href="https://arxiv.org/abs/2402.07874">Factorizing the Brauer monoid in polynomial time</a>, arXiv:2402.07874 [math.RA], 2024. See p. 24. %F A132911 E.g.f.: 1/(1-x^2+x^4/4) (with interpolated zeros); %F A132911 a(n)-(n+1)*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Nov 05 2012 %t A132911 Table[(n+1) (2n)!/2^n,{n,0,20}] (* _Harvey P. Dale_, Jun 02 2020 *) %Y A132911 Cf. A000680, A132912. %K A132911 easy,nonn %O A132911 0,2 %A A132911 _Paul Barry_, Sep 04 2007