cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132922 Row sums of triangle A132921.

This page as a plain text file.
%I A132922 #9 Mar 06 2022 00:11:05
%S A132922 1,4,10,19,32,50,75,110,160,233,342,508,765,1168,1806,2823,4452,7070,
%T A132922 11287,18090,29076,46829,75530,121944,197017,318460,514930,832795,
%U A132922 1347080,2179178,3525507,5703878,9228520,14931473,24159006,39089428,63247317,102335560
%N A132922 Row sums of triangle A132921.
%H A132922 Andrew Howroyd, <a href="/A132922/b132922.txt">Table of n, a(n) for n = 1..500</a>
%H A132922 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,2,-1).
%F A132922 Binomial transform of [1, 3, 3, 0, 1, -1, 2, -3, 5, -8, ...].
%F A132922 From _Andrew Howroyd_, Aug 28 2018: (Start)
%F A132922 a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n > 5.
%F A132922 a(n) = n*(n-1) + Fibonacci(n+2) - 1.
%F A132922 G.f.: x*(1 - x^2 - 2*x^3)/((1 - x)^3*(1 - x - x^2)).
%F A132922 (End)
%e A132922 a(4) = 19 = sum of row 4 terms of triangle A132921: (4 + 4 + 5 + 6).
%e A132922 a(5) = 32 = (1, 4, 6, 4, 1) dot (1, 3, 3, 0, 1) = (1 + 12 + 18 + 0 + 1).
%t A132922 LinearRecurrence[{4, -5, 1, 2, -1},{1, 4, 10, 19, 32},50] (* or *)
%t A132922 a[n_]:=n*(n - 1) + Fibonacci[n + 2] - 1; Array[a, 50] (* _Stefano Spezia_, Sep 01 2018 *)
%o A132922 (PARI) a(n) = n*(n-1) + fibonacci(n+2) - 1; \\ _Andrew Howroyd_, Aug 28 2018
%o A132922 (PARI) Vec((1 - x^2 - 2*x^3)/((1 - x)^3*(1 - x - x^2)) + O(x^40)) \\ _Andrew Howroyd_, Aug 28 2018
%Y A132922 Cf. A132922.
%K A132922 nonn
%O A132922 1,2
%A A132922 _Gary W. Adamson_, Sep 05 2007
%E A132922 Terms a(11) and beyond from _Andrew Howroyd_, Aug 28 2018