cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132964 Convolution triangle of A006190.

This page as a plain text file.
%I A132964 #35 Apr 25 2018 19:32:00
%S A132964 1,3,1,10,6,1,33,29,9,1,109,126,57,12,1,360,516,306,94,15,1,1189,2034,
%T A132964 1491,600,140,18,1,3927,7807,6813,3385,1035,195,21,1,12970,29382,
%U A132964 29737,17568,6630,1638,259,24,1,42837,108923,125406,85826,38493,11739,2436,332,27,1
%N A132964 Convolution triangle of A006190.
%C A132964 As a Riordan array, this is (1/(1-3x-x^2),x/(1-3x-x^2)).
%C A132964 T(n,k) is the number of words of length n over {0,1,2,3,4} having k letters 4 and avoiding runs of odd length for the letter 0. - _Milan Janjic_, Jan 14 2017
%H A132964 Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4.
%F A132964 Sum_{k=0..n} T(n,k) = A001076(n+1).
%F A132964 Sum_{k=0..floor(n/2)} T(n-k,k) = A007482(n).
%F A132964 T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or k>n. - _Philippe Deléham_, Dec 08 2013
%e A132964 Triangle begins:
%e A132964       1;
%e A132964       3,      1;
%e A132964      10,      6,      1;
%e A132964      33,     29,      9,     1;
%e A132964     109,    126,     57,    12,     1;
%e A132964     360,    516,    306,    94,    15,     1;
%e A132964    1189,   2034,   1491,   600,   140,    18,    1;
%e A132964    3927,   7807,   6813,  3385,  1035,   195,   21,   1;
%e A132964   12970,  29382,  29737, 17568,  6630,  1638,  259,  24,  1;
%e A132964   42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1;
%e A132964   ...
%Y A132964 Cf. A006190, A037027, A054456, A112906.
%K A132964 easy,nonn,tabl
%O A132964 0,2
%A A132964 _Philippe Deléham_, Nov 24 2007