This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132975 #19 Feb 16 2025 08:33:06 %S A132975 1,1,1,2,3,4,5,7,10,12,15,20,26,32,39,50,63,76,92,114,140,168,201,244, %T A132975 295,350,415,496,591,696,818,967,1140,1332,1554,1820,2126,2468,2861, %U A132975 3324,3855,4448,5126,5916,6816,7824,8970,10292,11793,13471,15372,17548 %N A132975 Expansion of q * psi(-q^9) / psi(-q) in powers of q where psi() is a Ramanujan theta function. %C A132975 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A132975 Vaclav Kotesovec, <a href="/A132975/b132975.txt">Table of n, a(n) for n = 1..10001</a> %H A132975 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015 %H A132975 Andrew Sills, <a href="http://home.dimacs.rutgers.edu/~asills/EMDC/SillsEMDC-Rev.pdf">Towards an Automation of the Circle Method</a>, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S115. %H A132975 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A132975 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A132975 Expansion of eta(q^2) * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^18)) in powers of q. %F A132975 Euler transform of period 36 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...]. %F A132975 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + u1 + u2) * (u3 + u6 + 3 * u3 * u6). %F A132975 G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132976. %F A132975 G.f.: x * Product_{k>0} P(3,x^k) * P(9,x^k) * P(12,x^k) * P(36,x^k) where P(n,x) is the n-th cyclotomic polynomial. %F A132975 3 * a(n) = A132972(n) unless n=0. a(2*n) = A128129(n). a(2*n + 1) = A132302(n). a(3*n) = A128640(n). Convolution inverse of A132976. %F A132975 a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Oct 13 2015 %e A132975 G.f. = q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ... %t A132975 nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) * (1+x^(18*k)) / (1-x^(4*k)),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 13 2015 *) %t A132975 a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(9/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)], {q, 0, n}]; (* _Michael Somos_, Oct 31 2015 *) %o A132975 (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)), n))}; %Y A132975 Cf. A128129, A128640, A132302, A132972, A132976. Essentially the same as A213267. %K A132975 nonn %O A132975 1,4 %A A132975 _Michael Somos_, Sep 07 2007