This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A132993 #8 Sep 17 2015 03:02:01 %S A132993 1,2,2,3,4,3,5,6,6,5,7,10,9,10,7,11,14,15,15,14,11,15,22,21,25,21,22, %T A132993 15,22,30,33,35,35,33,30,22,30,44,45,55,49,55,45,44,30,42,60,66,75,77, %U A132993 77,75,66,60,42,56,84,90,110,105,121,105,110,90,84,56 %N A132993 Triangle t(n,m) = P(n-m+1) * P(m+1) read by rows, 0<=m<=n, where P=A000041 are the partition numbers. %e A132993 1; %e A132993 2, 2; %e A132993 3, 4, 3; %e A132993 5, 6, 6, 5; %e A132993 7, 10, 9, 10, 7; %e A132993 11, 14, 15, 15, 14, 11; %e A132993 15, 22, 21, 25, 21, 22, 15; %e A132993 22, 30, 33, 35, 35, 33, 30, 22; %e A132993 30, 44, 45, 55, 49, 55, 45, 44, 30; %e A132993 42, 60, 66, 75, 77, 77, 75, 66, 60, 42; %e A132993 56, 84, 90, 110, 105, 121, 105, 110, 90, 84, 56; %p A132993 A132993 := proc(n,m) %p A132993 combinat[numbpart](n-m+1)*combinat[numbpart](m+1) ; %p A132993 end proc: %p A132993 seq(seq(A132993(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Nov 11 2011 %t A132993 << DiscreteMath`Combinatorica`; << DiscreteMath`IntegerPartitions`; Clear[t, n, m]; t[n_, m_] = PartitionsP[n - m + 1]*PartitionsP[m + 1]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] %Y A132993 Cf. A000041, A048574 (row sums). %K A132993 nonn,tabl %O A132993 0,2 %A A132993 _Roger L. Bagula_ and _Gary W. Adamson_, Aug 27 2008