cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133032 a(n) = n^p(n), where p(n) is the partition number of n.

This page as a plain text file.
%I A133032 #13 May 11 2019 18:33:56
%S A133032 0,1,4,27,1024,78125,362797056,4747561509943,73786976294838206464,
%T A133032 42391158275216203514294433201,
%U A133032 1000000000000000000000000000000000000000000
%N A133032 a(n) = n^p(n), where p(n) is the partition number of n.
%H A133032 G. C. Greubel, <a href="/A133032/b133032.txt">Table of n, a(n) for n = 0..20</a>
%F A133032 a(n) = n^A000041(n).
%e A133032 a(6)=362797056 because the partition number of 6 is 11 and 6^11 = 362797056.
%p A133032 with(combinat): seq(n^numbpart(n), n=0..11); # _Emeric Deutsch_, Nov 24 2007
%t A133032 Table[n^(PartitionsP[n]), {n, 0, 20}] (* _G. C. Greubel_, Oct 02 2017 *)
%o A133032 (PARI) for(n=0,20, print1(n^(numbpart(n)), ", ")) \\ _G. C. Greubel_, Oct 02 2017
%Y A133032 Cf. A132641. Partition numbers: A000041.
%K A133032 nonn
%O A133032 0,3
%A A133032 _Omar E. Pol_, Oct 31 2007
%E A133032 More terms from _Emeric Deutsch_, Nov 24 2007