This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133046 #32 Dec 24 2024 10:39:51 %S A133046 1,7,49,302,1469,7361,36768,179740,845931,3963680,18391564,85242128, %T A133046 388623673,1766623630,7978439499,36263167175,165629569428, %U A133046 758818810990,3493881706141,16114043592799,74545030871553,345100524480819,1602372721738102,7437536860666213,34651381875296000,161067479882075800,752172458688067137,3499844183628002605,16377718018836900735,76309690522352444005 %N A133046 Starting from the standard 12 against 12 starting position in checkers, the sequence gives the number of distinct move sequences after n moves. %C A133046 Duplicate captures (viz. the situation where a king can capture the same pieces in different directions) are counted separately. %D A133046 C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 512. %H A133046 A. Bik, <a href="http://www.aartbik.com/MISC/checkers.html">Aart's Computer Checkers Page</a> %H A133046 M. Fierz, <a href="http://checker-board.blogspot.com/">CheckerBoard</a> %H A133046 I. Korshunov, <a href="http://www.shashki.com/index.php?name=PNphpBB2&file=viewtopic&t=627&postorder=asc">Standard correctness check for a move generator</a> [in Russian] %H A133046 Jonathan Schaeffer et al., <a href="http://www.sciencemag.org/cgi/content/abstract/1144079">Checkers is solved</a>, Science, Vol. 317. no. 5844, pp. 1518-1522, Sep 14 2007. %Y A133046 Cf. A133047, A055213. %K A133046 nonn,nice %O A133046 0,2 %A A133046 Jonathan Schaeffer (jonathan(AT)cs.ualberta.ca), Dec 27 2007 %E A133046 a(12)-a(20) computed by _Aart Bik_ and sent by _Richard Bean_, Sep 18 2009 %E A133046 a(21)-a(26) computed by _Aart Bik_, with last two completed Sep 18 2012. Rein Halbersma was first to compute a(22). Murray Cash confirmed Aart's a(23) and a(24) results. %E A133046 a(27)-a(28) first computed by _Aart Bik_, Sep 2012. Paul Byrne confirmed Aart's a(23)-a(28). %E A133046 a(29) from _Murray Cash_, Nov 20 2020