cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133046 Starting from the standard 12 against 12 starting position in checkers, the sequence gives the number of distinct move sequences after n moves.

This page as a plain text file.
%I A133046 #32 Dec 24 2024 10:39:51
%S A133046 1,7,49,302,1469,7361,36768,179740,845931,3963680,18391564,85242128,
%T A133046 388623673,1766623630,7978439499,36263167175,165629569428,
%U A133046 758818810990,3493881706141,16114043592799,74545030871553,345100524480819,1602372721738102,7437536860666213,34651381875296000,161067479882075800,752172458688067137,3499844183628002605,16377718018836900735,76309690522352444005
%N A133046 Starting from the standard 12 against 12 starting position in checkers, the sequence gives the number of distinct move sequences after n moves.
%C A133046 Duplicate captures (viz. the situation where a king can capture the same pieces in different directions) are counted separately.
%D A133046 C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 512.
%H A133046 A. Bik, <a href="http://www.aartbik.com/MISC/checkers.html">Aart's Computer Checkers Page</a>
%H A133046 M. Fierz, <a href="http://checker-board.blogspot.com/">CheckerBoard</a>
%H A133046 I. Korshunov, <a href="http://www.shashki.com/index.php?name=PNphpBB2&amp;file=viewtopic&amp;t=627&amp;postorder=asc">Standard correctness check for a move generator</a> [in Russian]
%H A133046 Jonathan Schaeffer et al., <a href="http://www.sciencemag.org/cgi/content/abstract/1144079">Checkers is solved</a>, Science, Vol. 317. no. 5844, pp. 1518-1522, Sep 14 2007.
%Y A133046 Cf. A133047, A055213.
%K A133046 nonn,nice
%O A133046 0,2
%A A133046 Jonathan Schaeffer (jonathan(AT)cs.ualberta.ca), Dec 27 2007
%E A133046 a(12)-a(20) computed by _Aart Bik_ and sent by _Richard Bean_, Sep 18 2009
%E A133046 a(21)-a(26) computed by _Aart Bik_, with last two completed Sep 18 2012. Rein Halbersma was first to compute a(22). Murray Cash confirmed Aart's a(23) and a(24) results.
%E A133046 a(27)-a(28) first computed by _Aart Bik_, Sep 2012. Paul Byrne confirmed Aart's a(23)-a(28).
%E A133046 a(29) from _Murray Cash_, Nov 20 2020