This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133061 #17 Oct 08 2024 13:10:08 %S A133061 128,1116,15200,82908,801020,1849536,7083968,12359196,32144156, %T A133061 102480896,143054460,346565088,579070880,734799996,1146409148, %U A133061 2090525216,3573998396,4222293120,6749714268,9020062940,10364180256,15383790396,19693474076,27918166496,42933944448,52547391200 %N A133061 a(n) = 5*p^5 - 3*p^3 - 2*p^2, where p = prime(n). %H A133061 G. C. Greubel, <a href="/A133061/b133061.txt">Table of n, a(n) for n = 1..1000</a> %F A133061 a(n) = 5*(p(n))^5 - 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n). %e A133061 a(4)=82908 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035-1029-98=82908. %p A133061 a:= n-> (p-> (5*p^3-3*p-2)*p^2)(ithprime(n)): %p A133061 seq(a(n), n=1..26); # _Alois P. Heinz_, Sep 23 2024 %t A133061 Table[(Prime[n])^2*(5*Prime[n]^3 - 3*Prime[n] - 2), {n, 1, 50}] (* _G. C. Greubel_, Oct 09 2017 *) %o A133061 (Magma) [5*p^5-3*p^3-2*p^2: p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Dec 15 2010 %o A133061 (PARI) for(n=1,25, print1(5*prime(n)^5 - 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ _G. C. Greubel_, Oct 09 2017 %Y A133061 Cf. A000290, A000578, A000584, A045991, A133070. Prime numbers: A000040. %K A133061 nonn,easy %O A133061 1,1 %A A133061 _Omar E. Pol_, Nov 05 2007 %E A133061 More terms from _Vincenzo Librandi_, Dec 15 2010