This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133063 #18 Oct 08 2024 13:10:36 %S A133063 176,1278,15950,84966,809006,1862718,7113446,12400350,32217158, %T A133063 102627230,143233206,346869006,579484406,735277038,1147032086, %U A133063 2091418478,3575230670,4223655006,6751518846,9022210406,10366514358,15386748630,19696904798,27922396310,42939420486,52553573006 %N A133063 a(n) = 5*p^5 + 3*p^3 - 2*p^2, where p = prime(n). %H A133063 G. C. Greubel, <a href="/A133063/b133063.txt">Table of n, a(n) for n = 1..1000</a> %F A133063 a(n) = 5*(p(n))^5 + 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n). %e A133063 a(4)=84966 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035+1029-98=84966. %p A133063 a:= n-> (p-> (5*p^3+3*p-2)*p^2)(ithprime(n)): %p A133063 seq(a(n), n=1..26); # _Alois P. Heinz_, Sep 23 2024 %t A133063 Table[(Prime[n])^2*(5*Prime[n]^3 + 3*Prime[n] - 2), {n, 1, 50}] (* _G. C. Greubel_, Oct 09 2017 *) %o A133063 (Magma) [5*p^5+3*p^3-2*p^2: p in PrimesUpTo(200)]; // _Vincenzo Librandi_, Dec 15 2010 %o A133063 (PARI) for(n=1,25, print1(5*prime(n)^5 + 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ _G. C. Greubel_, Oct 09 2017 %Y A133063 Cf. A000290, A000578, A000584, A045991, A133072. Prime numbers: A000040. %K A133063 nonn,easy %O A133063 1,1 %A A133063 _Omar E. Pol_, Nov 05 2007 %E A133063 More terms from _Vincenzo Librandi_, Dec 15 2010