This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133080 #24 Jan 13 2022 02:26:48 %S A133080 1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0, %T A133080 1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0, %U A133080 0,0,0,0,0,0,0,0,1,1 %N A133080 Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones. %C A133080 A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...). %C A133080 Inverse of A133080: subdiagonal changes to (-1, 0, -1, 0, -1, ...); main diagonal unchanged. %C A133080 A133080^(-1) * [1,2,3,...] = A093178: (1, 1, 3, 1, 5, 1, 7, 1, 9, ...). %C A133080 In A133081, diagonal terms are switched with subdiagonal terms. %H A133080 G. C. Greubel, <a href="/A133080/b133080.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A133080 Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal. %F A133080 Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1". %F A133080 T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - _R. J. Mathar_, Feb 14 2015 %e A133080 First few rows of the triangle are: %e A133080 1; %e A133080 1, 1; %e A133080 0, 0, 1; %e A133080 0, 0, 1, 1; %e A133080 0, 0, 0, 0, 1; %e A133080 0, 0, 0, 0, 1, 1; %e A133080 0, 0, 0, 0, 0, 0, 1; %e A133080 ... %p A133080 A133080 := proc(n,k) %p A133080 if n = k then %p A133080 1; %p A133080 elif k=n-1 and type(n,even) then %p A133080 1; %p A133080 else %p A133080 0 ; %p A133080 end if; %p A133080 end proc: # _R. J. Mathar_, Jun 20 2015 %t A133080 T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]]; %t A133080 Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* _G. C. Greubel_, Oct 21 2017 *) %o A133080 (PARI) T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ _Michel Marcus_, Feb 13 2014 %o A133080 (PARI) firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ;res} \\ _David A. Corneth_, Oct 21 2017 %Y A133080 Cf. A000034 (row sums), A114753, A093178, A133081. %K A133080 nonn,easy,tabl %O A133080 1,1 %A A133080 _Gary W. Adamson_, Sep 08 2007