This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133097 #12 Sep 11 2023 17:51:49 %S A133097 0,0,1,3,5,8,10,15,27,28,23,28,20,30,22,40,32,45,27,62,89,62,116,167, %T A133097 105,118,108,51,99,151,88,137,137,265,174,195,320,321,249,283,226,281, %U A133097 293,394,465,369,585,565,639,404,483,221,233,428,384,370,527,431,818 %N A133097 a(n) = A005282(n) - A011185(n-1). %C A133097 Also A025582(n) - A010672(n-1). %C A133097 A005282 is the sequence of smallest numbers such that the pairwise sums of not necessarily distinct elements are all distinct, whereas A011185 is the sequence of smallest numbers such that the pairwise sums of distinct elements are all distinct. %C A133097 Sequence has negative terms; the first one is a(65) = -130. %H A133097 Klaus Brockhaus, <a href="/A133097/b133097.txt">Table of n, a(n) for n = 1..2400</a> %e A133097 a(6) = A005282(6) - A011185(6) = 21 - 13 = 8. %o A133097 (Python) %o A133097 from itertools import count, islice %o A133097 from collections import deque %o A133097 def A133097_gen(): # generator of terms %o A133097 aset2, alist, bset2, blist, aqueue, bqueue = set(), [], set(), [], deque(), deque() %o A133097 for k in count(1): %o A133097 cset2 = {k<<1} %o A133097 if (k<<1) not in aset2: %o A133097 for a in alist: %o A133097 if (m:=a+k) in aset2: %o A133097 break %o A133097 cset2.add(m) %o A133097 else: %o A133097 aqueue.append(k) %o A133097 alist.append(k) %o A133097 aset2.update(cset2) %o A133097 cset2 = set() %o A133097 for b in blist: %o A133097 if (m:=b+k) in bset2: %o A133097 break %o A133097 cset2.add(m) %o A133097 else: %o A133097 bqueue.append(k) %o A133097 blist.append(k) %o A133097 bset2.update(cset2) %o A133097 if len(aqueue) > 0 and len(bqueue) > 0: %o A133097 yield aqueue.popleft()-bqueue.popleft() %o A133097 A133097_list = list(islice(A133097_gen(),30)) # _Chai Wah Wu_, Sep 11 2023 %Y A133097 Cf. A005282, A011185, A025582, A010672, A133096. %K A133097 sign %O A133097 1,4 %A A133097 _Klaus Brockhaus_, Sep 17 2007