This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133141 #23 Jan 07 2024 15:11:01 %S A133141 1,331,159391,76825981,37029963301,17848365484951,8602875133782931, %T A133141 4146567966117887641,1998637156793688059881,963338963006591526974851, %U A133141 464327381532020322313818151,223804834559470788763733373781 %N A133141 Numbers which are both centered pentagonal (A005891) and centered hexagonal numbers (A003215). %C A133141 The problem is to find p and r such that 6*(2*p-1)^2 = 5*(2*r+1)^2 + 1 equivalent to 3*p^2 - 3*p + 1 = (5*r^2 + 5*r + 2)/2. The Diophantine equation (6*X)^2 = 30*Y^2 + 6 is such that %C A133141 X is given by 1, 21, 461, 10121, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2 - 20); %C A133141 Y is given by 1, 23, 805, 11087, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2+24); %C A133141 r is given by 0, 11, 252, 5543, 121704, ... with a(n+2) = 22*a(n+1) - a(n) + 10 and also a(n+1) = 11*a(n) + 5 + sqrt(120*a(n)^2 + 120*a(n) + 36); %C A133141 p is given by 1, 11, 231, 5061, ... with a(n+2) = 22*a(n+1) - a(n) - 10 and also a(n+1) = 11*a(n) - 5 + sqrt(120*a(n)^2 - 120*a(n) + 25). %H A133141 Colin Barker, <a href="/A133141/b133141.txt">Table of n, a(n) for n = 1..373</a> %H A133141 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (483,-483,1). %F A133141 a(n+2) = 482*a(n+1) - a(n) - 150. %F A133141 a(n+1) = 241*a(n) - 75 + 11*sqrt(480*a(n)^2 - 300*a(n) + 45). %F A133141 G.f.: z*(1-152*z+z^2)/((1-z)*(1-482*z+z^2)). %t A133141 LinearRecurrence[{483,-483,1},{1,331,159391},20] (* _Paolo Xausa_, Jan 07 2024 *) %o A133141 (PARI) Vec(-x*(x^2-152*x+1)/((x-1)*(x^2-482*x+1)) + O(x^100)) \\ _Colin Barker_, Feb 07 2015 %Y A133141 Cf. A003215, A005891, A254782, A133285. %K A133141 nonn,easy %O A133141 1,2 %A A133141 _Richard Choulet_, Sep 21 2007 %E A133141 More terms from _Paolo P. Lava_, Sep 26 2008