cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133141 Numbers which are both centered pentagonal (A005891) and centered hexagonal numbers (A003215).

This page as a plain text file.
%I A133141 #23 Jan 07 2024 15:11:01
%S A133141 1,331,159391,76825981,37029963301,17848365484951,8602875133782931,
%T A133141 4146567966117887641,1998637156793688059881,963338963006591526974851,
%U A133141 464327381532020322313818151,223804834559470788763733373781
%N A133141 Numbers which are both centered pentagonal (A005891) and centered hexagonal numbers (A003215).
%C A133141 The problem is to find p and r such that 6*(2*p-1)^2 = 5*(2*r+1)^2 + 1 equivalent to 3*p^2 - 3*p + 1 = (5*r^2 + 5*r + 2)/2. The Diophantine equation (6*X)^2 = 30*Y^2 + 6 is such that
%C A133141 X is given by 1, 21, 461, 10121, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2 - 20);
%C A133141 Y is given by 1, 23, 805, 11087, ... with a(n+2) = 22*a(n+1) - a(n) and also a(n+1) = 11*a(n) + sqrt(120*a(n)^2+24);
%C A133141 r is given by 0, 11, 252, 5543, 121704, ... with a(n+2) = 22*a(n+1) - a(n) + 10 and also a(n+1) = 11*a(n) + 5 + sqrt(120*a(n)^2 + 120*a(n) + 36);
%C A133141 p is given by 1, 11, 231, 5061, ... with a(n+2) = 22*a(n+1) - a(n) - 10 and also a(n+1) = 11*a(n) - 5 + sqrt(120*a(n)^2 - 120*a(n) + 25).
%H A133141 Colin Barker, <a href="/A133141/b133141.txt">Table of n, a(n) for n = 1..373</a>
%H A133141 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (483,-483,1).
%F A133141 a(n+2) = 482*a(n+1) - a(n) - 150.
%F A133141 a(n+1) = 241*a(n) - 75 + 11*sqrt(480*a(n)^2 - 300*a(n) + 45).
%F A133141 G.f.: z*(1-152*z+z^2)/((1-z)*(1-482*z+z^2)).
%t A133141 LinearRecurrence[{483,-483,1},{1,331,159391},20] (* _Paolo Xausa_, Jan 07 2024 *)
%o A133141 (PARI) Vec(-x*(x^2-152*x+1)/((x-1)*(x^2-482*x+1)) + O(x^100)) \\ _Colin Barker_, Feb 07 2015
%Y A133141 Cf. A003215, A005891, A254782, A133285.
%K A133141 nonn,easy
%O A133141 1,2
%A A133141 _Richard Choulet_, Sep 21 2007
%E A133141 More terms from _Paolo P. Lava_, Sep 26 2008