This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A133150 #7 Mar 31 2012 14:42:50 %S A133150 0,0,0,0,14,23,17,47,31,79,49,119,71,167,97,223,127,41,46,359,199,439, %T A133150 241,527,82,89,337,727,391,839,449,137,73,1087,577,1223,647,1367,103, %U A133150 217,94,1679,881,1847,967,119,151,2207,1151,2399,1249,113,193,401,1457 %N A133150 a(n) = smallest k such that A000290(n+1) = A000290(n) + (A000290(n) mod k), or 0 if no such k exists. %C A133150 a(n) is the "weight" of squares (A000290). %C A133150 The decomposition of squares into weight * level + gap is A000217(n) = a(n) * A184221(n) + A005408(n) if a(n) > 0. %H A133150 Remi Eismann, <a href="/A133150/b133150.txt">Table of n, a(n) for n = 1..10000</a> %e A133150 For n = 1 we have A000290(n) = 1, A000290(n+1) = 4; there is no k such that 4 - 1 = 3 = (1 mod k), hence a(1) = 0. %e A133150 For n = 5 we have A000290(n) = 25, A000290(n+1) = 36; 14 is the smallest k such that 36 - 25 = 11 = (25 mod k), hence a(5) = 14. %e A133150 For n = 18 we have A000290(n) = 324, A000290(n+1) = 361; 41 is the smallest k such that 361 - 324 = 37 = (324 mod k), hence a(18) = 41. %Y A133150 Cf. A020639, A117078, A117563, A001223, A118534, A090369, A090368, A130533, A130650, A130703, A130889, A130882. %K A133150 nonn %O A133150 1,5 %A A133150 _Rémi Eismann_, Sep 22 2007 - Jan 10 2011