cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133156 Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.

This page as a plain text file.
%I A133156 #65 Mar 01 2024 01:54:57
%S A133156 1,2,4,-1,8,-4,16,-12,1,32,-32,6,64,-80,24,-1,128,-192,80,-8,256,-448,
%T A133156 240,-40,1,512,-1024,672,-160,10,1024,-2304,1792,-560,60,-1,2048,
%U A133156 -5120,4608,-1792,280,-12,4096,-11264,11520,-5376,1120,-84,1
%N A133156 Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.
%C A133156 The Chebyshev polynomials of the second kind are defined by the recurrence relation: U(0,x) = 1; U(1,x) = 2x; U(n+1,x) = 2x*U(n,x) - U(n-1,x).
%C A133156 From _Gary W. Adamson_, Nov 28 2008: (Start)
%C A133156 Triangle read by rows, unsigned = A000012 * A028297.
%C A133156 Row sums of absolute values give the Pell series, A000129.
%C A133156 (End)
%C A133156 The row sums are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...}.
%C A133156 Triangle, with zeros omitted, given by (2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 27 2011
%C A133156 Coefficients in the expansion of sin((n+1)*x)/sin(x) in descending powers of cos(x). The length of the n-th row is A008619(n). - _Jianing Song_, Nov 02 2018
%H A133156 Tracale Austin, Hans Bantilan, Isao Jonas and Paul Kory, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Egge/egge8.html">The Pfaffian Transformation</a>, Journal of Integer Sequences, Vol. 12 (2009), page 25
%H A133156 P. Damianou, <a href="http://arxiv.org/abs/1110.6620">On the characteristic polynomials of Cartan matrices and Chebyshev polynomials</a>, arXiv preprint arXiv:1110.6620 [math.RT], 2014. - From _Tom Copeland_, Oct 11 2014
%H A133156 Pantelis A. Damianou, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.121.02.120">A Beautiful Sine Formula</a>, Amer. Math. Monthly 121 (2014), no. 2, 120-135. MR3149030
%H A133156 Caglar Koca and Ozgur B. Akan, <a href="https://arxiv.org/abs/2402.15888">Modelling 1D Partially Absorbing Boundaries for Brownian Molecular Communication Channels</a>, arXiv:2402.15888 [q-bio.MN], 2024. See p. 9.
%H A133156 Wikipedia, <a href="http://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>
%F A133156 A generating function for U(n) is 1/(1 - 2tx + t^2). Given A038207, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row, then insert alternate signs.
%F A133156 T(n,m) = (-1)^m*binomial(n - m, m)*2^(n - 2*m). - _Roger L. Bagula_ and _Gary W. Adamson_, Dec 19 2008
%F A133156 From _Tom Copeland_, Feb 11 2016: (Start)
%F A133156 Shifted o.g.f.: G(x,t) = x/(1 - 2x + tx^2).
%F A133156 A053117 is a reflected, aerated version of this entry; A207538, an unsigned version; and A099089, a reflected, shifted version.
%F A133156 The compositional inverse of G(x,t) is Ginv(x,t) = ((1 + 2x) - sqrt((1 + 2x)^2 - 4tx^2))/(2tx) = x - 2x^2 + (4 + t)x^3 - (8 + 6t)x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0.). Cf. A097610 with h_1 = -2 and h_2 = t. (End)
%e A133156 The first few Chebyshev polynomials of the second kind are
%e A133156     1;
%e A133156     2x;
%e A133156     4x^2 -    1;
%e A133156     8x^3 -    4x;
%e A133156    16x^4 -   12x^2 +   1;
%e A133156    32x^5 -   32x^3 +   6x;
%e A133156    64x^6 -   80x^4 +  24x^2 -   1;
%e A133156   128x^7 -  192x^5 +  80x^3 -   8x;
%e A133156   256x^8 -  448x^6 + 240x^4 -  40x^2 +  1;
%e A133156   512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x;
%e A133156   ...
%e A133156 From _Roger L. Bagula_ and _Gary W. Adamson_: (Start)
%e A133156      1;
%e A133156      2;
%e A133156      4,    -1;
%e A133156      8,    -4;
%e A133156     16,   -12,    1;
%e A133156     32,   -32,    6;
%e A133156     64,   -80,   24,   -1;
%e A133156    128,  -192,   80,   -8;
%e A133156    256,  -448,  240,  -40,  1;
%e A133156    512, -1024,  672, -160, 10;
%e A133156   1024, -2304, 1792, -560, 60, -1; (End)
%e A133156 From  _Philippe Deléham_, Dec 27 2011: (Start)
%e A133156 Triangle (2, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, ...) begins:
%e A133156    1;
%e A133156    2,   0;
%e A133156    4,  -1,  0;
%e A133156    8,  -4,  0,  0;
%e A133156   16, -12,  1,  0,  0;
%e A133156   32, -32,  6,  0,  0,  0;
%e A133156   64, -80, 24, -1,  0,  0,  0; (End)
%t A133156 t[n_, m_] = (-1)^m*Binomial[n - m, m]*2^(n - 2*m);
%t A133156 Table[Table[t[n, m], {m, 0, Floor[n/2]}], {n, 0, 10}];
%t A133156 Flatten[%] (* _Roger L. Bagula_, Dec 19 2008 *)
%Y A133156 Cf. A038207, A053117.
%Y A133156 Cf. A018297, A000129. - _Gary W. Adamson_, Nov 28 2008
%Y A133156 Cf. A000079, A001787, A001788, A001789, A003472, A054849, A002409, A054851. - _Philippe Deléham_, Sep 12 2009
%Y A133156 Cf. A091894, A097610, A099089, A207538.
%K A133156 tabf,sign
%O A133156 0,2
%A A133156 _Gary W. Adamson_, Dec 16 2007
%E A133156 More terms from _Philippe Deléham_, Sep 12 2009