cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133158 Binomial transform of A126568, second binomial transform of A026641.

Original entry on oeis.org

1, 3, 12, 57, 294, 1578, 8658, 48177, 270774, 1533450, 8736432, 50016090, 287497380, 1658174352, 9591422286, 55618701057, 323225066790, 1882009941570, 10976834700792, 64119701075886, 375057555388884, 2196539772794172, 12878508015774468
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2007

Keywords

Comments

The Hankel transform of this sequence is 3^n (see A000244).

Crossrefs

Row sums of triangle in A124575.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3*Sqrt[-1 + 2*x] / Sqrt[-1 + 6*x])/(4 - 6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 02 2023 *)

Formula

Conjecture: 2*n*a(n) + (-19*n+12)*a(n-1) + 6*(8*n-11)*a(n-2) + 36*(-n+2)*a(n-3) = 0. - R. J. Mathar, Jun 30 2013
a(n) ~ 2^(n + 1/2) * 3^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 02 2023